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Introduction

Toric geometry is a subject of increasing activity. Toric varieties are objects
on which one usually can check explicitly properties and compute invariants
from algebraic geometry. This happens for the so-called normal toric varieties,
i.e. algebraic varieties which are constructed from rational fans in an euclidean
space. In the last 10 years the theory of non normal toric varieties has also been
developed providing a very different and new scope as well as interesting and
beautiful new applications.

Normal toric geometry mainly uses techniques from convex geometry, as it is
technically founded on the concepts of fan and cone. Fans are sets of polyhedral
cones in such a way that each cone provides an affine chart of the toric variety.
Namely, those charts have, as coordinate algebra, the algebra of the semigroup
of lattice points lying inside the dual cone of the corresponding cone of the fan.

To study non normal toric geometry one needs to be more precise than
considers only cones. In fact, what one needs is to consider affine charts where
coordinate algebras are semigroup ones for more general classes of semigroups.
Thus, convex geometry should be used only as a tool by taking into account
that nice semigroup generate concrete polyhedral cones.

The purpose of this paper is to show how mathematics in toric geometry can
be understood as the theory of appropriate classes of commutative semigroups
with given generators. This viewpoint involves the description of various kinds
of derived objects as abelian groups and lattices, algebras and binomial ideals,
cones and fans, affine and projective algebraic varieties, simplicial and cellular
complexes, polytopes, and arithmetics.

Our approach consists in showing the mathematical relations among above
objects and clarifying their possibilities for future developments in the area. For
that purpose, we will survey some recent results and concrete applications.
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1 Semigroup and generators of toric geometry

The central object we will consider along the paper should be finitely generated
cancellative commutative semigroups with a specified system of generators.

For a commutative semigroup we understand here a set S endowed with an
internal commutative operation denoted by + having a zero element denoted
0. Semigroup homomorphisms are maps preserving the operation + and the
element 0. Thus, one has the category of semigroups.

Cancellative for S means that S is isomorphic to a subsemigroup of an
abelian group, or in other words that the semigroup homomorphism S → G(S),
where G(S) is the abelian group generated by S, is injective. Here G(S) is the
abelian group of classes of elements pairs (m,n) ∈ S × S for the relationship
(m,n) ∼ (m′, n′) iff m+ n′ = m′ + n.

Thus, our central object should be the data of a semigroup S as above plus
a surjective semigroup homomorphism

π0 : Nh → S,

where N is the semigroup of nonnegative integers. Notice that π0 is just the
same data than the choice of a generator system of the semigroup S, namely
the generator system n1, . . . , nh, where nj = π0(ej), ej being the h-upla with
j-coordinate 1 and other coordinates 0.

Since toric geometry is a subject providing explicit computations and results,
one can think that toric mathematics essentially consists in the detailed study of
maps π0 of above type. Along the paper it will be shown how above statement
stands when dealing with affine or projective toric objects.

For studying such a map π0 one needs to understand the structure and
behavior of its fibers π−1

0 (m) for m ∈ S. This is an elementary and difficult
problem which, for many purposes, becomes the key problem of toric geometry.

First remark is that one should consider some kind of finiteness hypothesis,
namely requiring that the fibers π−1

0 (m) be finite for every m. The following
result gives some distinct characterizations of that hypothesis.

Proposition 1.1 : (see [4]) Let π0 : Nh → S be a surjective semigroup homo-
morphism where S is a cancellative commutative semigroup. Then, the following
conditions are equivalent:

1. π−1
0 (m) is finite for every m.

2. There is no infinite sequence m ∈ S, m1, . . . ,mi, . . . ∈ S − {0}, such that
m−m1 − · · · −mi ∈ S for every i.

3. S ∩ (−S) = {0}.

4. There exists a semigroup homomorphism λ : S → N such that λ(m) = 0
iff m = 0.
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Semigroups satisfying conditions in Proposition 1.1 are called, in the litera-
ture, of different forms according as the property one wants to emphasize. Thus,
they are said to be combinatorially finite in view of (1) (see [5]), Nakayama in
view of (2) (see [18] and [24]), strongly convex in view of (3) (see [11]), or posi-
tive in view of (4). The terminology which will be used along this paper is that
of “positive”.

The description of the fibers is related to the study of relations among the
chosen generators of S. Since the “kernel” of π0 does not exist in the category of
semigroups, to describe the relations one needs a different object, the congruence
Γ of π0, to define those relations. The congruence Γ is the binary relation on Nh

consisting of those pairs (u,v) ∈ Nh ×Nh such that u, v belong to the same
fiber π−1

0 (m) for some m ∈ S. Congruences are binary equivalence relations
on semigroups allowing to give a semigroup structure on the quotient, i.e. with
the property that (u,v) ∈ Γ and w is in the semigroup (i.e. Nh in our case)
then (u + w,v + w) ∈ Γ. Since S is a finitely generated semigroup, by [13,
1.6], one has that the congruence Γ is finitely generated, i.e. that Γ is the least
congruence containing one finite set of elements in it. In other words, one can
say that S is a finitely presented semigroup.

In the rest of the paper we will show to treat and exploit the information
in a semigroup with their generators and relations. This will involve several
fields of mathematics on each of which one will derive concrete perspectives and
consequences. Figure below shows the scheme of the spirit of our discussions.

Convex Geometry Group Theory
↖ ↗

Algebraic
Geometry ←− Semigroups

(Generators and relations) −→ Combinatorics

↙ ↓ ↘
Commutative

Algebra
Applied

Mathematics Arithmetics

2 Abelian groups and lattices

Consider a map π0 : Nh → S as in section 1. Since the assignment to a
semigroup of the group generated by the semigroup is functorial, one has an
induced exact sequence of abelian groups given by

0→ L→ G(Nh) = Zh → G(S)→ 0,

where L is a subgroup of Zh, so L is finitely generated and torsion free. We
will refer to L as the lattice associated to the data π0. Notice that L is nothing
but the kernel of surjective induced group homomorphism π : Zh → G(S), so
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that L is the object keeping the information of the group theoretical relations
among the semigroup generators n1, . . . , nh.

The relation between the congruence Γ and the lattice L can be described
easily. In fact, if (u,v) ∈ Γ then there is a unique element w ∈ Nh such that
(u−w,v−w) ∈ Γ and that the supports of u−w and v−w are disjoint. Here
for support of an element of Zh we mean the set of indices whose coordinates are
nonzero for such element. Notice that if ≤ denotes the componentwise product
ordering on Zh, then w is nothing but the infimum of u, v for that ordering.
Thus, one has a well defined map

b : Γ→ Nh × L,

given by b(u,v) = (w,u− v).
If (w, l) ∈ Nh×L, set l = l+− l−, where l+ = sup(l,0), l− = sup(−l,0) and

sup(, ) stands for the supremum relative to the ordering ≤. Then the assignment
to the element (w, l) of the couple (l+ +w, l−+w) is a map Nh×L→ Γ which
is, by construction, inverse of b. So one has the following result.

Proposition 2.1 : The map b is a bijection.

It follows from Proposition 2.1 that the information in Γ is just the same
than in L and how one can get one from the other.

Moreover, from free abelian groups and their sublattices one can study the
semigroups we are interested in. In fact, if a lattice L ⊂ Zh is given, then from
the obvious exact sequence

0→ L→ Zh → Zh/L→ 0,

one can consider the subsemigroup S of the group Zh/L given by the image of
Nh and generators given by the images of the elements e1, . . . , eh. Also notice
that the condition on S to be positive is equivalent to the condition L∩Nh = (0).

Notice that, in general, the abelian group G(S) = Zh/L can have torsion, so
the semigroup S can also have torsion in the sense that it can contain elements
m,n ∈ S, m 6= n and integers a ∈ N such that am = an. If T is the torsion
subgroup of G(S), the image of S in G(S)/T is a new semigroup S of the same
kind than S. Notice that S is a positive iff S is so. This follows from the fact
that L ∩Nh = (0) iff L ∩Nh = (0), L being the lattice for the induced map
π0 : Nh → S.

Finally, we remark that since S is not only the image of Nh by π, but S is also
the image of others subsets of Zh, in particular of the set Nh +L. This new set
is also a semigroup which has an obvious structure of Nh-module. As semigroup
it is not positive (unless the trivial case L = 0 for which S = (0)), however if S
is positive then Nh+L has the property analogous to (2) in Proposition 1.1, i.e.
there is no an infinite sequence of elements m = m0 > m1 > . . . > mi > . . . in
Nh+L. In other words, if S is positive then Nh+L is generated by its minimal
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elements for the ordering ≤. Note that such minimal elements are nothing but
the primitive elements of the set Nh + L, i.e. those elements which are not a
sum of a nonzero element of Nh with another element of Nh + L.

3 Semigroup ideals and algebras

In this section we will fix a commutative field k. Then, one has a functor
from the category of semigroups to that of k-algebras taking each semigroup
to its semigroup k-algebra. Notice that, for any semigroup S, the semigroup
k-algebra k[S] consists of the vector space generated (freely) by the symbols
χm, one for each m ∈ S, endowed with a multiplication given on symbols by
the rule χm · χn = χm+n, for m,n ∈ S.

Now, consider a map π0 : Nh → S as in section 1, and apply above funtor
to it. One gets an exact sequence

0→ I → A = k[Nh]
ϕ0→ R = k[S]→ 0,

where I is the kernel of the k-algebra homomorphism ϕ0 associated to π0, which
is called the ideal of the semigroup relative to the generators n1, . . . , nh. Notice
that, if X1, . . . ,Xh are variables corresponding to the coordinates in Nh, one
has a canonical identification A = k[X1, . . . , Xh]. Moreover, both R and A
are graded over the semigroup S (say, S-graded) by giving the obvious degree
m to the symbol χm and degree ni to the variable Xi. In particular, one has
decomposition into homogeneous components A =

⊕
m∈S Am, R =

⊕
m∈S kχ

m.
Here Am is the vector space generated by all the monomials of degree m, i.e.
Xu = Xu1

1 · · ·X
uh

h with
∑h
i=1 uini = m.

The homomorphism ϕ becomes S-graded of degree 0 and, therefore, the
semigroup ideal is S-homogeneous, i.e. one has I =

⊕
m∈S Im with Im = I∩Am

for every m ∈ S.
Notice that R is generated, as k-algebra, by the symbols χn1 , . . . , χnh , so

that I can be understood as the ideal of polynomial relations of such symbols.
The ideal I is binomial as it is generated by the binomials Xu −Xv for (u,v)
ranging over the congruence Γ. Using Proposition 2.1 one sees that it is also
generated by Xl+ −Xl− where l ranges over the lattice L. Anyway, notice that
to generate I it is enough to take a finite number of binomials Xu −Xv, where
the couples (u,v) generate the congruence Γ.

Now, assume that S is positive. Then nice properties occur. First, by 3)
in Proposition 1.1, one has that the irrelevant MR =

⊕
m 6=0 kχ

m and MA =⊕
m 6=0Am are ideals of R and A respectively. Second, by 1) one has that each

Am is a finitely dimensional vector space. Third, by 2), Nakayama lemma holds
for S-graded modules; in particular one can speak about minimal systems of
homogeneous generators for I which are nothing but those inducing a basis
of the vector space I/MAI. It is clear that one can consider minimal sets of
binomial generators for I.
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In fact, one can consider S-graded free homogeneous resolutions of R as A-
module. If S is positive, Nakayama’s lemma shows that one can consider the
minimal free resolution (which is unique up to isomorphism) which is one of
type

0→ Fp
ϕp→ · · · → F2

ϕ2→ F1
ϕ1→ F0 = A

ϕ0→ R→ 0,

where each Fi is a free S-graded finite A-module, the ϕi are graded of degree 0
and p the projective dimension of R as A-module, i.e. the least integer p such
that Fp 6= 0. Auslander-Buchsbaum theorem shows the relation p+r = h, where
r is the depth of R. The integer r ranges on the values 0 ≤ r ≤ d, where d is the
Krull dimension of R. Notice that the Krull dimension of R coincides with the
rank of the abelian group G(S). Last statement follows from the computation
of dimensions in terms of trascendence degrees. It implies, in particular that
the dimension of the k-algebra k[S] does not depend on the field k. This is not
the case for the integer r which could depend on k.

Commutative algebra brings interesting particular cases. First, when r = d,
the ring k[S] is said to be Cohen-Macaulay. This property depends on S and
k but not on the map π0. If k[S] is Cohen-Macaulay and, moreover, Fp has
rank 1 as A-module, then k[S] is said to be Gorenstein. This is a case in which
the minimal resolution is self-dual, i.e., by applying the functor Hom(−, A) and
considering the natural grading, the induced exact sequence

0→ Hom(F0, A)→ Hom(F1, A)→ · · · → Hom(Fp, A)→ Coker(ϕtp)→ 0,

is S-graded isomorphic to the minimal resolution of R. Again Gorensteiness
depends on S and k, not on π0. Finally, k[S] is said to be complete intersection
if I can be generated by h−d homogeneous elements (in fact binomials). Equiv-
alently, complete intersection means that the congruence Γ can be generated by
h − d pairs. Complete intersection is a property which only depends on S and
which implies Gorensteiness.

4 Cones and fans

With assumptions as above, next object one can associate to a semigroup S is
the cone C(S) generated by S, i.e. the cone generated by the image of S in the
Q-vector space VQ := G(S) ⊗Z Q. Since the base ring extension from Z to Q
kills the torsion, the cone C(S) obviously coincides with that of its image S in
G(S)/T .

If S is not positive, then C(S) is equal to the whole VQ, so it contains a
trivial information. Thus, the interesting case turns out to be the case in which
S is positive. Note that S is positive if and only if C(S) is a strongly convex
cone (i.e., if one has C(S) ∩ −C(S) = 0). This fact justifies the terminology in
(3) section 1.
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Now, if one takes into account the generators of S, then one has that the
cone C(S) is the rational polyhedral one generated by (i.e. it is the convex hull
of) the images in VQ of the generators n1, ..., nh. Thus, convex geometry occurs
as a useful technique of toric mathematics.

There is a very important case, in which the cone C(S) determines the
semigroup S. In fact, a semigroup is said to be normal if it is torsion free and
if, moreover, one has S = C(S) ∩ G(S). It is well known that S is a normal
semigroup if and only if the semigroup k-algebra k[S] is an integrally closed
domain, i.e. a normal ring. Hoschter theorem [14] shows that if S is normal
then, in fact, k[S] is Cohen-Macaulay.

A trivial example of normal semigroups are the free semigroups, i.e. those
which are isomorphic to Nt for some integer t. In fact, free semigroups are
the only ones such that the k-algebra k[S] is a regular ring. The terminology
”regular” is coherently used also in convex geometry, being it applied to a cone
on Qt which is generated by a basis of the lattice Zt. Notice that a semigroup
is free if and only if it is normal and if the cone it generates is regular.

Toric geometry appears initially as the study of normal toric varieties. Thus,
the development of normal toric geometry is settled on convex geometry and,
therefore, one can says that normal toric mathematics are convex geometry
mathematics.

Coming back to the general case, the convex cone C(S) provides a new
interesting invariant for a semigroup S, namely the number of edges e of C(S).
Comparing with the dimension, one has e ≥ d, and the equality holds whenever
the cone C(S) is simplicial. Thus, semigroups for which e = d will be called
simplicial along the paper. Free semigroups are a very special case of simplicial
semigroups.

Toric varieties also include non affine ones. Affine toric varieties are nothing
but the affine varieties X with coordinate k-algebra equal to a semigroup k-
algebra with the assumptions of section 1. General toric varietes are algebraic
varieties which can be covered by affine toric varieties with overlapings which
are also affine toric.

Normal toric varieties are usually given in terms of convex geometry. The
data consists in a fan Φ of rational polyhedral cones in Qn, i.e, a set {σ}σ∈Φ,
where Φ is a finite set, each σ a strongly convex polyhedral cone in Qn, the faces
of each σ in Φ is also in Φ, and the intersection of every couple of two cones in
Φ is a common face of both of them. The variety is built in the following way.
For each σ in Φ, consider the semigroup Sσ of integer coordinates points which
lie inside the dual cone of σ, and let Xσ be the affine toric variety given by Sσ.
Then the toric variety X is the join of the affine varieties Xσ, the intersection
of any two Xσ, Xτ of those affine charts being the toric variety Xσ∩τ .

Thus, for a normal toric variety, the fan Φ not only determines the variety
but it represents and exhibits its geometry. In fact, cones in the fan corre-
spond to affine charts in such a way that intersection of cones correspond to the
overlapings of the corresponding charts.

7



For non normal toric varieties one can proceed in a similar way, but taking a
further precision on the semigroups. Thus, one needs a fan Φ as above plus, for
each cone σ, a subsemigroup S′σ of Sσ generating the same cone as Sσ and in
such a way that the intersection of two charts with respective coordinate algebras
k[S′σ] and k[S′τ ] is the affine chart with coordinate algebra k[S′σ∩τ ]. Thus, one
sees that, also in the global case, toric mathematics are not only convex geometry
but again they involve finitely generated cancellative semigroups.

The support of a fan Φ is defined to be the union of the supports of the
cones in the fan. The fan is said to be complete if its support is Qn. Toric
varieties built from complete fans are complete algebraic varieties. Next section
is devoted to the particular case of projective varieties, a subclass of complete
toric varieties.

5 Affine and projective toric varieties

Toric varieties are algebraic ones, so algebraic geometry is naturally related to
toric mathematics. Particularly interesting algebraic varieties are affine and
projective ones. When a data π0 : Nh → S, is given, the semigroup S gives
rise to the (abstract) affine toric variety X = Spec(k[S]), whereas the choice of
generators provided by π0 gives rise to an embedding of X into the affine space
Ah. The dimension of X is just the rank d of the abelian group G(S). Below,
we discuss and emphasize how abstract and embedded projective toric varieties
can be also described in nice terms.

Let S be a finitely generated cancellative commutative semigroup. Assume
that S is endowed with a semigroup map λ : S → N such that the semigroup
is generated by the elements in the set S1 = λ−1(1). Then, for any choice
of the field k, the couple (S, λ) gives rise to an (abstract) (d − 1)-dimensional
projective algebraic scheme, namely Z = Proj(k[S]), where now k[S] is seen
as an N-graded algebra by relaxing its natural S-grading via the map λ (in
other words, degree i ∈ N homogeneous elements are the sums of homogeneous
elements of S-degrees in λ−1(i)). Along the paper couples (S, λ) as above will
be related as polarized semigroups.

For a polarized semigroup (S, λ), one has the property that m ∈ S is a sum
of i ≥ 0 elements of S1 if and only if one has λ(m) = i. This property has
two immediate consequences. First, the set S1 (and hence any fiber λ−1(i)) is
finite, as S1 is nothing but the set of irreducible elements in S. Second, the
semigroup S is, a fortiori, positive. For the last statement, notice that to prove
positiveness, when a map λ as above already exists, one only needs to check
λ−1(0) = 0 which follows from the aforesaid property.

Now, assume that S is torsion free. Then, since k[S] is a domain, one has
that the projective algebraic scheme Z is, in fact, a projective algebraic variety.

Proposition 5.1 : Let (S, λ) be a polarized semigroup such that S is torsion
free. Then Z = Proj(k[S]) is a projective toric variety.
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In fact, since S is torsion free, it can be viewed as a subset of VQ. On the
other hand, the map λ extends to a group homomorphism λZ : G(S)→ Z and
to a R-linear map λR : VR → R, where VR = G(S)⊗Z R. Now, let Ω1 be the
convex hull of the set S1 in VR, and let S0

1 ⊂ S1 the vertex set of S1. Notice,
that S0

1 ,S1 and Ω1 lie in the affine hyperplane in VR given by λ−1
R (1).

Fix m0 ∈ S0
1 . Then, the semigroup S(m0) generated by the set of elements

of type m − m0 with m ∈ S1 is a new positive finitely generated semigroup
whose associated group is λ−1

Z (0). In particular, it follows that the dimension
of the affine toric variety X(m0) given by S(m0) is d− 1 where d = rankG(S),
i.e. the dimension of the projective variety Z. Moreover, X = Spec(k[S]) being
the projecting cone of Z, the construction shows that the affine toric varieties
X(m0), when m0 ranges over S0

1 , form a covering of Z as affine charts, making
of Z a projective toric variety. This shows the proposition.

For projective normal varieties it is possible to describe which Cartier divi-
sors are ample and very ample ones. For a polarization of a projective variety
one means to pick a very ample Cartier divisor class. It provides an embedding
of the variety in a projective space. When the variety is toric, one sees that
the polarization produces a polarized semigroup (S, λ) in such a way that the
variety is isomorphic to the one given by the couple (S, λ). See [11] for details.

Thus, it is equivalent to give an embedded projective toric variety than to
give a polarized semigroup. Notice that, for a polarized semigroup (S, λ) given,
the set S1 is the set of irreducible elements of S, so it is the only generator
set contained in S1 which gives the embedding of the affine toric variety X =
Spec(k[S]) which is the projecting cone of Z. Thus, a polarized semigroup
provides a canonical embedding of the projective toric variety into Ph−1 where
h is the cardinality of S1.

We remark that the fan giving rise to the projective variety Z lies in the
dual space of the hyperplane λ−1

Q (0). Namely, the cones of the fan are exactly
the duals of the cones generated by the semigroups S(m0). By construction,
it is easy to see that the such a fan is a complete one which correspond to the
algebraic geometric fact that any projective variety is a complete one.

Finally, as it occurs for affine toric varieties, main algebraic geometric char-
acteristics of projective toric varieties are recognized in terms of the polarized
semigroup (S, λ). Thus, Z = Proj(k[S]) is said to be arithmetically Cohen-
Macaulay (resp. Gorenstein) if and only if the algebra k[S] is Cohen-Macaulay
(resp. Gorenstein). In the same way, Z is projectively normal if and only if k[S]
is normal, i.e., if the semigroup S is normal. Finally the variety Z is normal
(resp. regular) if and only if each semigroup S(m0) is normal (resp. free).

Notice that to be projectively normal means that Si = Si, where Si = λ−1(i)
and Si = C(S) ∩ λ−1(i), i.e. if every element in Si is a sum of i elements of
S1 for all i’s. Normalness can be characterized in rather similar terms, using
the Ehrhart and Hilbert functions. Ehrhart (resp. Hilbert) function is the map
E(resp.H) : N → N given by E(i) = card(Si) (resp. H(i) = card(Si)), which
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coincides with a polynomial map of degree d − 1 with coefficients in Q for i
big enough. Then, under the most general conditions, the leader terms of the
polynomials for E and H are equal, and the variety Z is normal exactly when
both polynomials are equal. Obviously, in those terms, projective normalness
is characterized by the property E = H.

6 Polytopes, simplicial and cellular complexes

Once one has an embedded affine or projective toric variety, one looks for de-
scribing and computing, when possible, equations and syzygies for the embed-
ding. Most of results in this direction are recent and they use combinatorial
objects such as simplicial and cellular complexes or polytopes. Note that, from
section 5, the projective case is reduced to the affine one, as for a given polarized
semigroup, the equations (and sygygies) of the embedded projective variety it
defines are the same than the equations (and syzygies) for its projecting cone
affine variety. Such affine variety is nothing but the (affine) toric variety given
by the semigroup S of the polarization with S1 as chosen system of generators.

Along this section, we will assume that a map π0 : Nh → S, as in section
1, is fixed, and that S is a positive semigroup. Denote by Λ the generator
system of S given by π0, by Π the set of primitive elements of the Nh-module
M = Nh + L, and, for every m ∈ S, by Υm the set of monomials of S-degree
equal to m. Notice that the set Υm can be identified to the fiber π−1

0 (m). Recall
that the fact that S is positive implies that M is generated by Π and that each
Υm is finite. Then, there are several combinatorial objects with vertex set one
of Λ,Π or Υm which are naturally associated to π0 as described below.

Associated to any fixed element m in S one has the simplicial complexes
∆m, Θm and the polytope Ωm defined, respectively as follows. First, ∆m is
the simplicial subcomplex of parts F of Λ such that m − nF ∈ S, where nF =∑
n∈F n. Second, Θm is the simplicial subcomplex of parts G of Υm such

that all the monomials of G have a non unit greatest common divisor (i.e.
those monomials share at least one variable). Third, Ωm is the polytope in
VR = Zh ⊗Z R given by the convex hull of the set Υm = π−1

0 (m).
Notice that on the set S one can consider an ordering � defined by m′ � m

if and only if m −m′ ∈ S, and that, if m′ � m then one has ∆m′ ⊂ ∆m, Θm′

times a monomial of degree m − m′ is a subcomplex of Θm and, finally, the
translation of Ωm′ by any vector in the fiber π−1

0 (m−m′) is a subset of Ωm.
Associated to the whole S, one has two useful regular cellular subcomplexes

of parts of Π. Namely, on one side one has the so-called Taylor complex Ξ
which is nothing but the (simplicial) complex of all parts of Π, and, on the
other hand, the hull complex Σ which is the subcomplex whose faces are the
subsets of Π which correspond with some unbounded face of the convex hull of
the set of points of VR of type ta = (ta1 , ..., tah) for a = (a1, ..., ah) ∈ M where
t is any real number big enough. The mentioned correspondence is the obvious
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one taking into account that any vertex of above convex hull is necessary one
of type tb with b ∈ Π. See [2] for details on the construction and properties of
the hull cellular complex. Sometimes, a subcomplex of Σ, the so-called Scarf
complex is considered. It is, in fact, a simplicial complex which is defined to
be the set of parts H of Π satisfying the property aH 6= aH′ for every H ′ 6= H
where, aH stands for the supremum of the elements in H for the ordering ≤
of section 2. The hull and the Scarf complexes coincide when the data π0 is
generic, i.e. when the congruence Γ can be generated by couples (u,v) such
that the unions of the supports of u and v is the set {1, 2, . . . , h}.

In the sequel, we will often use reduced homology with values in the field k
for simplicial and cellular complexes. The corresponding i-th reduced homology
vector spaces will be denoted by H̃i.

The description of equations has to do, in practice, with the determination of
sets of binomial generators of the semigroup ideal I (section 3) which are either
a minimal set of generators or a Gröbner basis. For each monomial ordering (i.e.
a total order on the set of monomials for which the monomial 1 is the minimum
and which is closed under multiplication for constant monomials) one has a well
defined reduced Gröbner basis with respect to such ordering, which happens to
be also generated by binomials (see [22] for details). Thus, each such reduced
Gröbner basis can be understood either as a subset of the congruence Γ or of
the lattice L (sections 1 and 2). The union of reduced Gröbner bases for all the
possible monomial orderings is called the universal Gröbner basis, and it has the
property of being, simultaneously, a Gröbner basis for all monomial orderings.
Again the universal Gröbner basis can be seen as a subset of Γ or L. A reduced
Gröbner basis with respect to a concrete ordering can be computed from any
other generator system by means of the well known Buchberger algorithm. The
description of the universal Gröbner basis becomes more difficult and it will be
stated precisely just below.

To find the universal Gröbner basis, consider the subset U of S consisting
of those elements m ∈ S such that the polytope Ωm has an edge which is not
parallel to some edge of some Ωm′ for some m′ ≺ m. Then, for each m ∈ U
consider the binomials of type Xu − Xv, where the coordinates of u − v are
relatively prime and the segment [u,v] is an edge of Ωm. A result by Sturmfels,
Weismantel and Ziegler [21] shows that the set of all binomials one obtains in
this way when m ranges over U is exactly the universal Gröbner basis of I. Such
universal basis is finite as, one can see, that it is contained into the so-called
Graver basis which is itself finite. The Graver basis consists of the binomials
corresponding to the primitive elements of the lattice L, i.e. those elements
l = l+− l− in L for which there are not other l′ = l′+− l′− in L such that l 6= l′

and l′+ ≤ l+ and l′− ≤ l−.
To find minimal sets of homogeneous generators of I one can proceed as

follows. Consider the set C of elements m ∈ S such that H̃0(Θm) 6= 0, i.e.
those elements for which the complex Θm is not connected. The set C is finite.
For each m ∈ C pick a monomial Xu in each connected component of Θm and
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distinguish the monomial Xv picket for one concrete of the components. Then
the binomials Xu − Xv, where Xu ranges over the picket monomials for the
other components, are the degree m terms of a minimal system of homogeneous
generators of I. Thus, when m ranges over the set C, the whole set of obtained
binomials Xu −Xv is a minimal set of homogeneous generators for the ideal.

A different way to find homogeneous generators for I, which involves the
complexes ∆m, is also available for higher order syzygies, and it will be next
discussed in this higher order context. We do not know if such discussion could
be also reasonably done in terms of the complexes Θm as well as if the complexes
∆m or Θm could be used to describe the universal Gröbner basis.

The description of syzygies consists in obtaining either the minimal S-graded
resolution (section 3) or concrete resolutions which other special properties, for
example, the property of preserving the symmetries relative to the action of the
lattice L.

With notations as in section 3, the i-th order syzygy module is the S-
graded module Ni = ker(ϕi). Notice that one has N0 = I. For each degree
m ∈ S, the number of generators of degree m in any minimal set of gener-
ators for Ni is, by Nakayama’s lemma, the dimension of the k-vector space
Vi(m) = (Ni)m/(MANi)m. A first and key connection between syzygies and
toric geometry is a result due initially to Hoschter, [15], and considered again
by several authors in [7], [1], [5], which asserts that one has an explicit and
natural vector space identification of type

Vi(m) = H̃i(∆m),

where H̃i stands for the reduced simplicial homology with coefficients in the field
k. Moreover, computations of direct and inverse images by the isomorphisms
given rise to above identification are available.

This result illustrates how combinatorics play a natural role also for describ-
ing syzygies, and, therefore, how one has many reasons to include combinatorics
among toric mathematics. The first direct applications of above result are given
by Briales, Campillo, Marijuán and Pisón in [4] to give an effective algorithmic
to compute minimal systems binomial generators of the ideal I.

To apply for i ≥ 1 above natural isomorphisms, the main difficulties which
arise are first to compute those value of m such that H̃i(∆m) is nonzero, and,
second, to determine the homology. If one is able to avoid these two difficulties
in concrete cases, then from the fact that the isomorphisms are explicit one can
derive successive methodic constructions of minimal sets of generators for the
syzygy modules in the minimal resolution of R (see [5] for details).

To approach the first difficulty, we will mention that, recently, Briales, Pisón
and Vigneron [6] ( [19] for the case i = 1) determine appropriate finite subsets Ci
of S with the property that m /∈ Ci implies H̃i(∆m) 6= 0. As a consequence, they
obtain an algorithm for computing the minimal resolution (see [6] for details),
because the second difficulty is quite well understood from a computational
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viewpoint, as concrete homologies can be calculated by means of linear algebra
and integer linear programming as pointed out in [18], [19] and [6].

However, integer programming being also a technique to which development
toric geometry also is contributing (as we will show to the end of the paper),
it is convenient to try to better understand the explicit structure of the ho-
mologies H̃.(∆m). This is treated by Campillo and Gimenez in [8]. For it, one
considers a partition Λ = E ∪ C, where E is a subset of generators whose image
in VQ generates minimally the cone C(S), in the sense that, for each edge of
C(S), E contains exactly one element whose image generates such edge. Notice,
that one has e = card(E), e being nothing but the invariant of S in section 4.
Algebraically, one deduces that k[S] becomes a finite extension of k[E ]. Thus,
the minimal graded resolution of k[S] as A-module can be compared with its
minimal resolution as B-module, where, now, B = k[Ne] corresponds, as in
section 1, to the semigroup generated by the set E .

This situation makes in evidence two kind of objects. First, one has the
Apery set relative to E , which is nothing but the set Q of elements of q ∈ S such
that q − n /∈ S for every n ∈ E . In other words, the Apery set is nothing but
the set of exponents whose corresponding symbols generate minimally k[S] as
k[E ]-module, and, therefore, it is a finite set. Second, for each m ∈ S one has the
analogous of ∆m for this relative situation, namely the simplicial subcomplex
Tm of parts J of E such that m−nJ ∈ S. Thus, one can see that the dimension
of H̃i(Tm) is exactly the number of degree m elements in a minimal set of E-
homogeneous generators of the i − th-order syzygy module in above minimal
resolution of the B-module k[S].

Now, for a fixed m ∈ S, one has a key long exact sequence of type

. . .→ Hi+1(Qm)→ Ki → H̃i(∆m)→ Hi(Qm)→ Ki−1 → . . .

where H.(Qm) and K. are appropriated vector spaces of the following nature.
First, H.(Qm) is the homology of a complex associated to the vertex m of a
graph GQ with coloured edges constructed from the knowledge of Q, which has
C as colour set and which is called the Apery graph. The vertex set of GQ
consists of the elements m of type q + nI where q ∈ Q and I ⊂ C. Edges
of colour n ∈ C join a vertex m′ to another m whenever m − m′ = n. The
complex associated to m has as i-th chain space that freely generated by the
subsets I ⊂ C of cardinality i + 1 such that m − nI ∈ Q, the boundary map
being the projection of the usual simplicial boundary. Second, the spaces K.

are much more difficult to describe and we avoid the details. However, they
can be computed in successive steps in two different and complementary ways.
One, in terms of new graphs of exactly the same type than GQ but with other
concrete sets instead Q. Other in terms of homologies of type H̃.(Tm′) where
the elements m′ are of type m−nI with I ⊂ C. See [8] for the details and some
applications.

An extra consequence of the construction of the complexes Tm is that one
has a way to characterize the depth r of the ring k[S]. Recall that, the three
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integers r,d and e associated to a positive semigroup are such that r ≤ d ≤ e.
The integers d and e are easily recognized from S. To recognize r, in [8] it is
proved that if r0 is a integer with 1 ≤ r0 ≤ d, then one has that the inequality
r ≥ r0 is equivalent to the fact H̃e−r0(Tm) = 0 for every m ∈ S. In particular,
for r0 = d one gets a characterization of Cohen-Macaulayness by the property

H̃e−d(Tm) = 0

for everym ∈ S, which, for the simplicial case e = dmeans that all the complexes
Tm are connected. From this, it is easy to recover the well known character-
ization due to Goto [12] with asserts that, for simplicial semigroups, Cohen-
Macaulay is equivalent to the property

m ∈ G(S),n, n′ ∈ E ,n 6= n′,m+ n ∈ S,m+ n′ ∈ S ⇒ m ∈ S.

Other characterizations of Cohen-Macaulayness for nonsimplicial cases are given
in [23] and [20].

A standard application which illustrates the using of the technique of above
long exact sequences is to the case of simplicial Cohen-Macaulay semigroups
(i.e. those for which r = d = e). Since, in that case, the complexes Tm are
connected, one can deduce that Ki = 0 for every i, so that one gets

H̃i(∆m) = Hi(Qm)

for every m and i. Thus, the minimal resolution for simplicial Cohen-Macaulay
semigroups can be derived from a unique combinatorial object, the Apery graph.

For the general case, there are other ways to derive free resolutions for R
from a unique combinatorial object. Namely, as shown in [2] this can be done
either from the Taylor or from the hull complexes, Ξ and Σ respectively.

Let us explain how it works. For it, consider for each one of above cellular
complexes an associated complex of A-modules given as follows. The i-th order
chains are the elements of the free A-module generated by the i-dimensional
faces of the considered cellular complex, and the boundary map is given on any
such a face H by

δ(H) =
∑
H′

ε(H,H ′)
aH
aH′

H ′

where the sum ranges over all the faces H ′ of the considered cellular complex,
ε(H,H ′) ∈ {0, 1,−1} denotes the incidence index for the cellular complex, and
aH , a′H are the elements defined above. Recall that, from the definition of
regular cellular complex, the incidence index satisfies the properties ε(H,H ′) = 0
unless H ′ be a facet of H, so above sum is extended only to facets of H in the
cellular complex.

Because of the properties of the Taylor and hull complexes, one has that what
one actually gets are A-module free resolutions of k[M ] = k[Nh+L]. Moreover,
the resolution, which is Zh-graded by construction, it is in fact invariant by
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the action of the lattice L induced from its action on Π. This means, that
each one of the chain A-modules is in fact also a free A[L]-module, where A[L]
is the algebra of the group L on the coefficient ring A. Notice that one has
A[L] = k[Nh × L], so the first projection Nh × L → Nh, seen as a Nh-module
homomorphism, gives rise to a surjective A-linear map A[L] → A. Now, by
extending scalars via the map A[L]→ A and taking into account that

k[M ]⊗A[L] A = k[S] = R,

one gets a complex which is in fact S-graded and exact. Thus, according to the
considered cellular complex, one gets two S- graded resolutions of R, which are
respectively called the Taylor and the hull resolution.

Both resolutions are, in general, far from being minimal; however, if the data
π0 is generic, then the hull resolution is (isomorphic) to the minimal one. How-
ever, they are interesting and useful since they keep the action of the lattice L.
Notice that, as commented before, the hull complex is equal to the Scarf com-
plex for the generic case, so, in that situation the Scarf complex can be directly
used instead of the hull one for constructing above resolution, which is besides
minimal. Nevertheless, we remark that the generic case is combinatorially char-
acterized by the fact that the simplicial complexes ∆m which are not connected
have connected components which are full simplices. This is a strong assump-
tion from the combinatorial point of view, so, in general, if one wants to know
about the minimal resolution the only (by the moment) available description is
that discussed before based on the study of the simplicial complexes ∆m.

In the general (non generic) situation the hull resolution has, nevertheless,
another nice property, as in fact it is a finite one, i.e. the involved free A-
modules are or finite rank and the number of them is finite . This is a non
obvious statement which follows from the fact that the Graver basis is finite.
See [2] for details.

7 Multinumerical semigroups

In practice, the toric data π0 (of a semigroup with a signaled generator set)
is often given in arithmetical terms. In fact, the group G(S) being finitely
generated, it is nothing but, up to isomorphism, one of type

Zd × Z/g1Z× . . .× Z/glZ

for convenient integers d,l,g1, . . . , gl.
Thus, if such an isomorphism is, a priori, considered, then π0 becomes equiv-

alent to the specification of the coordinate (d+l)-tuples (in above product group)
of the generators n1, . . . , nh of S. A semigroup given by such a specification is
called a multinumerical semigroup. For the simplest case d = 1 and l = 0, they
are usually refered as numerical semigroups in the literature.
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What one would need, therefore, is to study toric varieties within arithmetics
from multinumerical semigroups. It means to deduce the behaviour and geomet-
rical properties of those varieties from arithmetical properties of the (d+l)-tuples
of integers or modular integers given by the semigroup generators.

Such an arithmetical study becomes, nevertheless, difficult and it is an open
problem except in rather few cases. The arising difficulties can be explained if
one looks to the discussion in above section on how combinatorics are involved
in the development of toric geometry. In fact, using objects such as polytopes
or simplicial or cellular complexes avoids to deal with delicate relations among
numbers.

However, mathematically speaking, once that combinatorial methods have
grow up and produce nice results, one can hope to try to interpret them in the
framework of arithmetics. This strategy is used in [8] for affine and projective
toric curves and in [5] for affine and simplicial projective toric surfaces. For the
general case, good computational results dealing with equations are also derived
by Vigneron in [18]. To show the possibilities of above strategy, we will discuss,
here, such results for curves.

An affine toric curve is given by the numerical semigroup S given by a set
Λ of h nonnegative integers. One has r = d = 1 and, since the cone C(S) has
only one edge, also e = 1. Thus, this case is a simplicial Cohen-Macaulay one.
Then, pick a partition of Λ in a set E consisting of any single element s ∈ Λ and
as complementary set C the set of the h− 1 remaining elements. Now, consider
the Apery set Q consisting of those integers q ∈ S such that q−s /∈ S, and from
it construct the coloured graph GQ. It is not difficult to translate the graph
structure in arithmetical relations, so that the homologies H̃i(∆m) = Hi(Qm)
for the vertices m of GQ can be derived from such relations. One concludes that
the minimal resolution for affine toric varieties can be obtained in complete
arithmetical terms from the set of generators of the given numerical semigroup.
See [8] for details.

A projective toric curve of degree s is given by a subsemigroup of N2 gen-
erated by a set Λ = E ∪ C, where E is the set consisting of the two elements
(s, 0) and (0, s) and C consists of elements (c1, s − c1), . . . , (ch−2, s − ch−2) for
different values ci with 0 < ci < s. The semigroup S can be polarized by the
function λ given by λ(c, c′) = (c+ c′)/s, so that S defines an embedding of the
projective toric curve in Ph−1. Notice that one has d = e = 2 and that either
r = 2 or r = 1, according as the projective curve be or not be arithmetically
Cohen-Macaulay.

Let S1 be the numerical semigroup generated by c1, . . . , ch−2, s, and for each
c ∈ S1 denote by µ(c) the least number of the generators the above generators
of S1 needed the achieve the sum c. Notice, that the function µ satisfies the
property µ(c) ≤ µ(c− s) + 1 for every c ∈ S whenever c− s ∈ S. By translating
into arithmetics the methods in [8], in [9] it is shown that the projective toric
curve is arithmetically Cohen-Macaulay if and only if one has µ(c) = µ(c−s)+1
for every s ∈ S1 such that c− s ∈ S.
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In general, from the knowledge of the function µ it is easy to find Apery set
Q relative to above partition Λ = E ∪ C as well as the set D consisting of those
elements m in S such that m− (s, 0) ∈ S, m− (0, s) ∈ S, m− (s, s) /∈ S. One
can consider a coloured graph GD in an identical way that GQ but replacing Q
by D. In [8] it is shown that the vector space Ki in the long exact sequence
of the precedent section can be identified to the homology Hi(Dm), where this
last homology has also an identical construction than that for the case of the
set Q. Thus, one deduces the long exact sequence

. . .→ Hi+1(Qm)→ Hi(Dm)→ H̃i(∆m)→ Hi(Qm)→ . . . .

The involved homogies as well as the images maps in this exact sequence can
be given in aritmetical terms from the given data s, c1, ..., ch−2. From here, this
is so for the reduced homologies H̃.(∆m), therefore, the minimal resolution of
the projective toric curve is obtained from arithmetics.

8 Applications

The development of toric geometry has provided applications to many problems
in geometry. This is related to the fact that, quite often, toric varieties are
objects on which one can determine and describe the main involved ingredients
in the considered problems. Applications also occur to some external problems
to geometry and algebra, in such a way that, toric geometry is becoming also to
be an interesting topic of applied mathematics. Those external applications are
mainly related to applied combinatorics or to applied optimization. We will end
this paper by illustrating this situation with two examples of current research.

The first one is to the coin exchange problem, a classical problem of applied
combinatorics. The approach and results are recently obtained by Campillo
and Revilla in the paper [9]. Assume one has a coin system with coins of values
c1 < c2 < . . . < ch−1. Then, setting s = ch−1 one has a projective toric curve Z,
namely that of degree s given by the (polarized) subsemigroup of N2 generated
by the elements (0, s), (c1, s− c1), . . . , (ch−1, s− ch−1) = (s, 0).

The exchange problem looks for achieving a value c in the semigroup S1

generated by the coin values in an appropriate way. One wants, in particular,
to achieve the value c with the minimum number of coins, namely the integer
µ(c) introduced in above section. The problem can be, therefore, formulated
as to give good ways or algorithms to achieve the value c with µ(c) coins in
practice. Comments in above section show how, this problem is mathematically
closed to that of the determination of equations and syzygies for projective toric
curves.

Usually considered coin systems have a strong property, namely for they the
greedy algorithm to achieve the values c with µ(c) coins works. The greedy
algorithm achieves a values c ∈ S1 by , first, taking the largest coin cj such
that cj ≤ c and, then, restart with the value c − cj and continue in the same

17



way. If, for every c ∈ S1, the greedy algorithm uses µ(c) coins then one says
that it works for the system. From the discussion at the end of last section,
one deduces that if the greedy algorithm works then Z should be arithmetically
Cohen-Macaulay.

From that, one shows how toric geometry brings an interesting new class
of coin systems with nice properties, namely the Cohen-Macaulay ones, i.e.
those such that the associated projective toric curve Z is arithmetically Cohen-
Macaulay. For them, in general, the greedy algorithm to achieve values with
minimum number of coins is not available, but one has an alternative new and
good algorithm to do so (see [9] for details).

The second application is to integer linear programming, also a classical
problem, this time of applied optimization. Integer linear programming is re-
lated to multinumerical subsemigroups of Zd, which, for the sake of simplicity,
will be assumed to be positive. Let S be such a subsemigroup and assume that
it is generated by the elements n1, . . . , nh ∈ Zd. The integer linear program-
ming problem consists in finding the optimal solution with non negative integral
coordinates to one of type

h∑
i=1

xini = m

which minimizes a linear map (the cost map)

ρ(x1, . . . , xh) =
h∑
i=1

xiρi.

Here, the coefficients ρi are real numbers in general.
An integer linear program can be seen, therefore, as the specification of type

(π0, ρ) where π0 is the data of a semigroup and generators as above and ρ the
cost function. For each m ∈ S the solutions of the integer linear programming
problem for m are among the elements in the fiber π−1

0 (m) and, moreover,
among the vertices of the polytope Ωm.

Now, notice that, once one fixes any monomial ordering on the variables
x1, . . . , xh (for instance the reverse lexicographic ordering), the cost function
gives rise to another monomial ordering by comparing two monomials, first, by
the value of ρ on the exponents and, second, in case of equal values of ρ by the
previous fixed ordering (i.e. the weighted ordering corresponding to the above
one) . Then, one can prove that the reduced Gröbner basis of the ideal I given
by π0 relative to this new ordering provides a minimal test set for the integer
programming as described in the sequel.

In fact, the reduced Gröbner basis is generated by binomials, therefore, it
can be understood as a subset Uρ of the lattice L. On the other hand, one
has the property that if x = (x1, . . . , xh) ∈ Nh is in a fiber and l ∈ L (i.e. a
feasible solution) then x − l is again a feasible solution whenever x− l ∈ Nh.
Then, the set Uρ is a test set for the program as it satisfies the following two
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conditions. First, if x is a feasible solution which is not optimal, then there
exists l ∈ Uρ such that x − l is also a feasible solution. Second, if x is an
optimal solution to a program, then x − l is not a feasible solution for every
l ∈ Uρ. The condition on the Gröbner basis to be reduced implies that Uρ is
minimal among the subsets satisfying above two conditions. Test sets provide
nice algorithms, in the obvious way suggested by both conditions, to solve the
integer linear programming problem.

Non reduced Gröbner bases provide non minimal test sets. In particular,
the set U giving the universal Gröbner basis in section 6, which is finite and
the union of all Uρ for all cost functions, is a test set for all programs when ρ
varies, i.e. it is a data which only depends on π0. See [16] and [17] for details.
For algorithms involving cases of non positive semigroups see [3] or consider the
Lawrence lifting (see for example [22]).
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[6] E. BRIALES, P. PISÓN, A.VIGNERON, The regularity of a Toric Variety
Preprint, University of Seville (1999).
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