Tema 3.- Raíces de polinomios

DEFINICIÓN 3.0.1.— Sea A un anillo y k un subcuerpo de A (i.e. k es un subanillo de A que es un cuerpo). Dado un polinomio $f(X) = a_d X^d + \cdots + a_0 \in k[X]$ y dado $\alpha \in A$ definimos "el valor de f(X) en α " como:

$$f(\alpha) = a_d \alpha^d + \dots + a_0 \in A.$$

Diremos que α es una raíz (o un cero) de f(X) si $f(\alpha) = 0$.

PROPOSICIÓN 3.0.2.— (Propiedad universal de los anillos de polinomios) En las condiciones de la definición anterior, la aplicación $\varphi: k[X] \to A$ dada por $\varphi(f(X)) = f(\alpha)$ es el único homomorfismo de anillos tal que $\varphi(X) = \alpha$.

EJEMPLO 3.0.3. – Si en la definición anterior tomamos A = k[X] y $\alpha = X + a$, con $a \in k$, el homomorfismo de "sustitución"

$$f(X) \in k[X] \mapsto f(X+a) \in k[X]$$

es de hecho un automorfismo de anillos.

Por ejemplo, sea $k=\mathbb{Q};$ la sustitución de X por X-1 lleva al polinomio X^2+X+1 sobre

$$(X-1)^2 + (X-1) + 1 = X^2 - X + 1,$$

y la sustitución de X por X+1 lleva a X^2-X+1 sobre

$$(X+1)^2 - (X+1) + 1 = X^2 + X + 1.$$

Proposición 3.0.4.— Sea k un cuerpo, $f(X) \in k[X]$ y $\alpha \in k$. Las propiedades siguientes son equivalentes:

- 1. $f(\alpha) = 0$.
- 2. f(X) es divisible por $X \alpha$.

COROLARIO 3.0.5.— Sea k un cuerpo y $f(X) \in k[X]$ un polinomio no nulo de grado d > 0. Entonces f(X) tiene a lo sumo d raíces distintas en k.

DEFINICIÓN 3.0.6.— Sea $f(X) \in k[X]$ un polinomio no nulo y $\alpha \in k$ una raíz de f(X). Entonces $(X - \alpha)|f(X)$ en K[X]. Al máximo entero s > 0 tal que $(X - \alpha)^s|f(X)$ se le llama la multiplicidad de α como raíz de f(X). Se dirá que α es una raíz simple de f(X) si s = 1. En caso contrario se dirá que es múltiple.

Definición 3.0.7.— Sea k un cuerpo y

$$f(X) = X^n + a_1 X^{n-1} + \ldots + a_{n-1} X + a_n \in k[X].$$

Se define la derivada por la regla formal

$$f'(X) = \frac{d}{dX}f(X) = nX^{n-1} + (n-1)a_1X^{n-2} + \dots + a_{n-1}.$$

De la misma forma que en Cálculo elemental, se prueban las siguientes propiedades de la derivación de polinomios:

- 1. (f(X) + g(X))' = f'(X) + g'(X).
- 2. Si $a \in k$, es (af(X))' = af'(X).
- 3. (f(X)g(X))' = f'(X)g(X) + f(X)g'(X)

Las derivadas de orden superior $f^{(i)}(X)$ se definen como las derivadas sucesivas de f(X).

PROPOSICIÓN 3.0.8.— Sea k el cuerpo \mathbb{Q} , \mathbb{R} o \mathbb{C} , $f(X) \in k[X]$ un polinomio no nulo y $\alpha \in k$ una raíz de f(X). La multiplicidad de la raíz α de f(X) es el entero s tal que $f^{(i)}(\alpha) = 0$, para todo $i = 0, 1, \ldots, s-1$ y $f^{(s)}(\alpha) \neq 0$ (por derivada de orden cero se entiende el polinomio).

Proposición 3.0.9.— Todo polinomio f(X) irreducible con coeficientes racionales no tiene raíces múltiples.