Poliedros

Probar que en todo poliedro hay, al menos, dos caras con el mismo número de aristas.

Progresiones

- 1. Hallar un número positivo tal que su parte decimal, su parte entera y él mismo estén en progresión geométrica.
- 2. ¿Tiene lo anterior algo que ver con una progresión geométrica que sea, a su vez, una sucesión de Fibonacci?

Soluciones	en páç	gina 2	2.					

SOLUCIONES

Poliedros

En primer lugar hay que observar que si una cara tiene x aristas, de ella "cuelgan" x caras.

Supongamos entonces que el poliedro tiene n caras. Si no hubiese dos con el mismo número de aristas, habría necesariamente una con n aristas (principio del palomar) \underline{y} de ella "colgarían" n caras, con lo cual habría n+1, ¡contradicción!

Progresiones

1. Sea x la parte decimal del número y E su parte entera; entonces el número es E+x. Se sabe que x, E, E+x es una progresión geométrica, luego:

$$E^{2} = x(E+x) \rightarrow E^{2} - xE - x^{2} = 0 \rightarrow (\frac{E}{x})^{2} - (\frac{E}{x}) - 1 = 0$$

De donde: $\frac{E}{x} = \frac{1+\sqrt{5}}{2}$ es decir, la razón de la progresión es el número áureo. Como 0<x<1, E es un entero menor o igual que 1, luego E=1. Entonces, la progresión es:

$$\frac{1}{\Phi}$$
,1, Φ

2. Efectivamente,

 $\frac{1}{\Phi}$,1, Φ , Φ^2 , Φ^3 ,... es la única sucesión de Fibonacci que es progresión geométrica.