(%i24)
wxplot2d([sin(x)], [x,0,2*%pi],
[gnuplot_preamble, "set grid;"],
[nticks,12])$
Se puede usar el desplegable "Gráficos 2D" y después modificar
plot2d a wxplot2d
Nótese que la constante Pi se denota %pi
(%i25)
%pi; float(%pi);
(%i27)
wxplot2d([cos(x)], [x,0,2*%pi])$
(%i28)
wxplot2d([sin(x),cos(x)], [x,0,2*%pi])$
(%i29)
wxplot2d([1/x], [x,-5,5], [y,-5,5])$
(%i30)
wxplot2d([(x-1)/(x*(x-2))], [x,-16/3,16/3],[y,-4,4])$
(%i31)
wxplot2d([x^2/(x+6)], [x,-7,10],[y,-3,10],
[plot_format, openmath],
[gnuplot_preamble, "set grid;"])$
(%i32)
wxplot2d([x^2/(x+6)], [x,-7,7],[y,-2,10])$
(%i33)
wxplot2d([sin(x),cos(x)], [x,0,2*%pi],
[gnuplot_preamble, "set grid;"])$
(%i34)
wxplot2d([(sin(x))^2+(cos(x))^2], [x,0,2*%pi],[y,-1,2],
[gnuplot_preamble, "set grid;"]);
(%i35)
wxplot2d(%e^x, [x,-5,5],[y,-2,10],
[gnuplot_preamble, "set grid;"]);
Nótese que la constante e (base de los logaritmos neperianos) se denota %e
La unidad imaginaria se denota %i
(%i36)
%i^2;
(%i37)
wxplot2d([sin(x)], [x,0,2*%pi],
[gnuplot_preamble, "set grid;"])$
-->
(%i39)
wxplot2d([(x+1)*(x-1)*(x-2)], [x,-3,3],[y,-3,3],
[gnuplot_preamble, "set grid;"])$
(%i44)
wxplot2d([(x+1)*(x-1)*(x-2),2*(x+1)*(x-1)*(x-2)], [x,-2,3],[y,-3,5],
[gnuplot_preamble, "set grid;"])$