Tema 9.-. Homomorfismos de cuerpos. Extensiones normales. Teorema fundamental de la teoría de Galois.

9.1. Caracteres de un grupo.

A la hora de resolver una ecuación f(X) = 0 con $f(X) \in k[X]$, tomamos un cuerpo de descomposición K de f(X) sobre k, donde están todas las raíces, y consideramos el grupo Aut(K). Vamos a estudiar dos relaciones:

- 1. A cada cuerpo $L, k \subset L \subset K$ le hacemos corresponder el subgrupo de $\operatorname{Aut}(K)$ formado por los automorfismos de K que dejan invariante a L.
- 2. Dado un subconjunto C de Aut(K), consideramos el conjunto de elementos de K que permanecen fijos por la acción de los automorfismos de C.

Vamos a estudiar primero la segunda relación.

DEFINICIÓN 9.1.1. Si K es un cuerpo y $C \subset \operatorname{Aut}(K)$ un subconjunto, representamos por F(C) al conjunto de puntos fijos por C, es decir

$$F(C) = \{ x \in K \mid \sigma(x) = x, \forall \sigma \in C \}$$

Otra notación muy utilizada para este conjunto es K^C .

NOTA 9.1.2.— Es evidente que F(C) es un subcuerpo de K y que si $C_1 \subset C_2$ entonces $F(C_1) \supset F(C_2)$.

Queremos estudiar la relación entre [K:F(C)] y #C, el número de elementos de C. Probaremos que $[K:F(C)] \geq \#C$, y para ello nos hacen falta los caracteres de un grupo.

DEFINICIÓN 9.1.3.— Sea G un grupo y k un cuerpo. Se llama carácter de G sobre k a un homomorfismo σ de grupos $\sigma: G \to k^*$, donde $k^* = k \setminus \{0\}$ es el grupo multiplicativo del cuerpo k.

DEFINICIÓN 9.1.4.— Los caracteres $\{\sigma_1, \ldots, \sigma_n\}$ de un grupo G sobre k se dicen dependientes, si existen $a_1, \ldots, a_n \in k$ no todos nulos, tales que

$$a_1\sigma_1(q) + \ldots + a_n\sigma_n(q) = 0$$

para todo $g \in G$. En otro caso se dicen independientes.

TEOREMA 9.1.5.— Teorema de independencia de caracteres. (Dedekind) Si G es un grupo, k es un cuerpo y $\{\sigma_1, \ldots, \sigma_n\}$ son caracteres distintos de G sobre k, entonces estos caracteres son independientes.

COROLARIO 9.1.6.— Sea K un cuerpo y ψ_1, \ldots, ψ_n distintos automorfismos de K. Entonces ψ_1, \ldots, ψ_n son caracteres independientes del grupo K^* sobre K, es decir no hay una combinación lineal no trivial con coeficientes en K de los automorfismos dados. Proposición 9.1.7.— Si K es un cuerpo y $C \subset \operatorname{Aut}(K)$ es un subconjunto finito, entonces

$$[K:F(C)] \ge \#C$$

Demostración. Sea $C = \{\psi_1, \dots, \psi_n\}$. Supongamos que [K : F(C)] = r < n. Sea w_1, \dots, w_r una base de K sobre F(C), y consideremos el sistema lineal homogéneo

$$\psi_{1}(w_{1})x_{1} + \ldots + \psi_{n}(w_{1})x_{n} = 0
\psi_{1}(w_{2})x_{1} + \ldots + \psi_{n}(w_{2})x_{n} = 0
\vdots
\psi_{1}(w_{r})x_{1} + \ldots + \psi_{n}(w_{r})x_{n} = 0.$$

de r ecuaciones y n incógnitas. Sabemos que tiene una solución no trivial $a_1, \ldots a_n \in K$. Sea $\alpha \in K$. Podemos encontrar $b_1, \ldots, b_r \in F(C)$ tales que

$$\alpha = b_1 w_1 + \ldots + b_r w_r.$$

Entonces

$$a_{1}\psi_{1}(\alpha) + a_{2}\psi_{2}(\alpha) + \dots + a_{n}\psi_{n}(\alpha) = \sum_{i=1}^{n} a_{i}\psi_{i}(\sum_{j=1}^{r} b_{j}w_{j}) = \sum_{i=1}^{n} \sum_{j=1}^{r} a_{i}\psi_{i}(b_{j})\psi_{i}(w_{j}) = \sum_{j=1}^{r} \psi_{i}(b_{j})(\sum_{i=1}^{r} a_{i}\psi_{i}(w_{j})) = \sum_{j=1}^{r} b_{j}(\sum_{i=1}^{r} a_{i}\psi_{i}(w_{j})) = 0$$

porque cada b_j está en el cuerpo fijo de las ψ_i y $\sum_{i=1}^r a_i \psi_i(w_j) = 0$ para cada j. Pero esto contradice la independencia lineal de ψ_1, \ldots, ψ_n , de donde $n \leq r$.

DEFINICIÓN 9.1.8.— Si K|k es una extensión, representamos por Gal(K|k) al conjunto de automorfismos de K que dejan fijos a todos los elementos de k.

Nota 9.1.9.— Los siguientes hechos son muy fáciles:

- 1. Gal(K|k) es un subgrupo del grupo Aut(K), que llamaremos grupo de Galois de la extensión.
- 2. $F(\operatorname{Gal}(K|k)) \supset k$.
- 3. Si $K|k_1|k_2$, entonces $\operatorname{Gal}(K|k_1) \subset \operatorname{Gal}(K|k_2)$ es un subgrupo.
- 4. Si $C \subset \operatorname{Aut}(K)$ es un subconjunto entonces $\operatorname{Gal}(K|F(C)) \supset C$.

9.2. Extensiones normales.

Vamos a mejorar la proposición anterior, estableciendo una igualdad donde se tenía sólo una desigualdad. Además, hemos definido dos construcciones: un grupo Gal(K|k) a partir de una extensión K|k y una extensión K|F(G) a partir de un grupo G. La nota anterior, punto 2, indica que, en general, no es una construcción la inversa de la otra, ya que 'extensión' \rightarrow 'grupo' \rightarrow 'extensión' no es la identidad, sin embargo el teorema siguiente demuestra que en el sentido 'grupo' \rightarrow 'extensión' \rightarrow 'grupo' sí se obtiene la identidad.

TEOREMA 9.2.1.— (Artin). Si K es un cuerpo y $G \subset \operatorname{Aut}(K)$ es un subgrupo finito, entonces:

$$[K:F(G)]=|G|.$$

Demostración. Sea $G = \{id = \sigma_1, \sigma_2, \dots, \sigma_n\}$. Por el teorema anterior, $[K : F(G)] \ge |G| = n$. Supongamos que existen v_1, \dots, v_{n+1} elementos en K linealmente independientes sobre F(G). Consideremos el sistema lineal homogéneo

$$x_{1}\sigma_{1}(v_{1}) + \dots + x_{n+1}\sigma_{1}(v_{n+1}) = 0$$

$$x_{1}\sigma_{2}(v_{1}) + \dots + x_{n+1}\sigma_{2}(v_{n+1}) = 0$$

$$\vdots$$

$$x_{1}\sigma_{n}(v_{1}) + \dots + x_{n+1}\sigma_{n}(v_{n+1}) = 0$$

de n ecuaciones y n+1 incógnitas. Tiene soluciones no triviales $(z_1, \ldots, z_{n+1}) \in K^{n+1}$. Si todos los z_i pertenecieran a F(G), entonces la primera ecuación del sistema implicaría que v_1, \ldots, v_{n+1} son linealmente dependientes sobre F(G) (recordemos que $\sigma_1 = id$).

De entre todas estas soluciones, escojamos una con un número r mínimo de elementos z_i no nulos. Reordenamos las incógnitas si fuera necesario, y podemos suponer que es

$$(\beta_1,\ldots,\beta_r,0,\ldots,0)\in K^{n+1}$$

y si dividimos por β_r podemos suponer que $\beta_r = 1$. Hemos visto que al menos uno de los elementos $\beta_1, \ldots, \beta_{r-1}, 1$ no está en F(G) (lo que prueba en particular que r > 1). Pongamos, sin pérdida de generalidad, que es β_1 . Existe un $k_0 \in \{1, \ldots, n\}$ tal que $\sigma_{k_0}(\beta_1) \neq \beta_1$. El sistema de ecuaciones queda

$$\beta_{1}\sigma_{1}(v_{1}) + \ldots + \beta_{r-1}\sigma_{1}(v_{r-1}) + \sigma_{1}(v_{r}) = 0
\beta_{1}\sigma_{2}(v_{1}) + \ldots + \beta_{r-1}\sigma_{2}(v_{r-1}) + \sigma_{2}(v_{r}) = 0
\vdots
\beta_{1}\sigma_{n}(v_{1}) + \ldots + \beta_{r-1}\sigma_{n}(v_{r-1}) + \sigma_{n}(v_{r}) = 0.$$

Aplicamos el automorfismo σ_{k_0} a las ecuaciones anteriores, y nos da

$$(\sigma_{k_0}\sigma_j)(v_1)\sigma_{k_0}(\beta_1) + \ldots + (\sigma_{k_0}\sigma_j)(v_{r-1})\sigma_{k_0}(\beta_{r-1}) + (\sigma_{k_0}\sigma_j)(v_r) = 0$$

para cada $j = 1, \ldots, n$.

Pero los elementos

$$\sigma_{k_0}\sigma_1, \sigma_{k_0}\sigma_2, \ldots, \sigma_{k_0}\sigma_n$$

son los mismos que los elementos

$$\sigma_1, \sigma_2, \ldots, \sigma_n$$

en otro orden, porque G es un grupo. Si definimos el índice i por $\sigma_{k_0}\sigma_j=\sigma_i$ entonces i y j recorren el conjunto $\{1,2,\ldots,n\}$ y las ecuaciones anteriores se pueden escribir

$$\sigma_i(v_1)\sigma_{k_0}(\beta_1) + \ldots + \sigma_i(v_{r-1})\sigma_{k_0}(\beta_{r-1}) + \sigma_{k_0}(v_r) = 0$$

con $i=1,\ldots,n$. Si ahora restamos estas ecuaciones de las originales obtenemos las igualdades

$$\sigma_i(v_1)(\beta_1 - \sigma_{k_0}(\beta_1)) + \ldots + \sigma_i(v_{r-1})(\beta_{r-1} - \sigma_{k_0}(\beta_{r-1})) = 0.$$

Pero entonces tenemos una solución no trivial del sistema de partida, porque $\beta_1 - \sigma_{k_0}(\beta_1) \neq 0$ (por la elección de k_0), y con menor número de elementos no nulos que la de las β_i . Esto es una contradicción y tenemos que [K:F(G)] = |G|.

COROLARIO 9.2.2. Sea K|k una extensión finita. Entonces

$$|\operatorname{Gal}(K|k)| \le [K:k]$$

y la igualdad se tiene si y solamente si k es el cuerpo fijo de Gal(K|k).

Demostración. Sea F_1 el cuerpo fijo de Gal(K|k). Entonces

$$k \subset F_1 \subset K$$
.

Por el teorema anterior, $[K:F_1] = |\operatorname{Gal}(K|k)|$. Entonces

$$[K:k] = |\operatorname{Gal}(K|k)|[F_1:k],$$

que prueba el corolario.

COROLARIO 9.2.3. – Sea G un subgrupo finito de Aut(K). Entonces G = Gal(K|F(G)), es decir, todo automorfismo de K que deje fijo a F(G) está en G.

Demostración. Siempre tenemos que $G \subset \operatorname{Gal}(K|F(G))$. Sea $G = \{\sigma_1, \ldots, \sigma_n\}$. Si existe $\sigma \in \operatorname{Gal}(K|F(G))$ que no está en G, sea F_0 el cuerpo fijo de $G \cup \{\sigma\}$. Tenemos que $F(G) \subset F_0$, porque si $z \in F(G)$ entonces $\sigma_i(z) = z$, por definición y $\sigma(z) = z$ por hipótesis. Por la proposición 9.1.7, $[K:F_0] \geq n+1$, y por el teorema anterior [K:F(G)] = n, lo cual es imposible, por la fórmula de los grados.

COROLARIO 9.2.4.— Si G_1 y G_2 son subgrupos finitos de $\operatorname{Aut}(K)$, entonces $F(G_1) = F(G_2)$ implica que $G_1 = G_2$.

Demostración. Si $F(G_1) = F(G_2)$ entonces $F(G_1)$ es fijo por G_2 . Por el corolario anterior, todo automorfismo que deje fijo $F(G_1)$ está en G_1 , luego $G_2 \subset G_1$. La otra inclusión es simétrica.

Definición 9.2.5.— Una extensión K|k se dice normal o de Galois si es finita y

$$F(\operatorname{Gal}(K|k)) = k.$$

ЕЈЕМРЬО 9.2.6.-

- 1. $\mathbb{Q}[\sqrt{2}]|\mathbb{Q}$ es una extensión normal, en la que $\operatorname{Gal}(\mathbb{Q}[\sqrt{2}]|\mathbb{Q})$ tiene dos elementos, la identidad y el \mathbb{Q} -automorfismo que permuta $\sqrt{2}$ y $-\sqrt{2}$.
- 2. $\mathbb{Q}[\sqrt[3]{2}]|\mathbb{Q}$ no es una extensión normal, porque $\mathrm{Gal}(\mathbb{Q}[\sqrt[3]{2}]|\mathbb{Q})$ se reduce a la identidad.

DEFINICIÓN 9.2.7.— Un polinomio irreducible $f(X) \in k[X]$ se dice separable si no tiene raíces múltiples en cualquier cuerpo de descomposición sobre k. Un polinomio cualquiera se dice separable si todos sus factores irreducibles en k[X] lo son.

Proposición 9.2.8.— Un polinomio $f(X) \in k[X]$ tiene una raíz múltiple α si y sólo si α es raíz de su derivada f'(X). en particular, f(X) irreducible es separable si y sólo si tal que mcd(f, f') = 1.

Como consecuencia, todos los polinomios en $\mathbb{Q}[X]$ son separables. Para encontrar ejemplos no separables debemos buscar en cuerpos más 'raros'. Por ejemplo, sea $k = \mathbb{Z}/\mathbb{Z}(Y)$, donde Y es una indeterminada, entonces $f(X) = X^2 - Y \in k[X]$ es irreducible y no es separable sobre k.

Lema 9.2.9. Sea K|k normal y $\alpha \in K$. Entonces el polinomio mínimo de α sobre k es separable y tiene todas sus raíces en K.

Demostración. Como K|k es finita, sea $f(X) \in k[X]$ el polinomio mínimo de α sobre k. Sean $\{\alpha_1, \ldots, \alpha_n\}$ los distintos elementos que aparecen en $\{\sigma(\alpha), \forall \sigma \in \operatorname{Gal}(K|k)\}$. Se tiene que $\sigma(\alpha_i) = \alpha_j$, para cada $\sigma \in \operatorname{Gal}(K|k)$. Por tanto el polinomio $p(X) = (X - \alpha_1) \cdots (X - \alpha_n)$ está en $F(\operatorname{Gal}(K|k))[X]$, que es k[X] por la normalidad de K|k. Como $p(\alpha) = 0$, f|p, por lo que f tiene todas sus raíces distintas, y están en $\{\alpha_1, \ldots, \alpha_n\} \subset K$.

TEOREMA 9.2.10.— Caracterización de extensiones normales. Una extensión K|k es normal si y sólo si K es el cuerpo de descomposición de un polinomio separable de $f \in k[X]$. En ese caso diremos que Gal(K|k) es el grupo de Galois de f sobre k.

Demostración. Supongamos K|k normal. Por ser finita,

$$K = k(\alpha_1, \ldots, \alpha_m).$$

Sean $f_i \in k[X]$ los polinomios mínimos de cada α_i , para i = 1, ..., m. Por el lema anterior K es el cuerpo de descomposición de $\prod_{i=1}^m f_i \in k[X]$, que es separable.

Recíprocamente, sea K el cuerpo de descomposición de $f(X) \in k[X]$ separable. Por tanto K|k es finita.

Si todas las raíces de f(X) están en k, entonces K = k, $Gal(K|k) = \{1\}$ y F(Gal(K|k)) = K = k.

Supongamos que f(X) tiene $n \geq 1$ raíces en $K \setminus k$ y establecemos por inducción que el resultado es cierto para todos los pares de cuerpos y polinomios separables con menos de n raíces fuera del subcuerpo. Sea $f(X) = p_1(X) \dots p_r(X)$ la descomposición en factores irreducibles en k[X]. Supongamos que grado $(p_1(X)) = s > 1$. Sea $\alpha_1 \in K$ una raíz de $p_1(X)$, por lo que $[k(\alpha_1):k] = s$. Se considera $f(X) \in k(\alpha_1)[X]$ y K como cuerpo de descomposición de f(X) sobre $k(\alpha_1)$. Como $p_1(X)$ es separable sus raíces $\alpha_1, \dots, \alpha_s \in K$ son todas distintas. Por el carácter indistinguible de las raíces, existen isomorfismos $\sigma_i: k(\alpha_1) \to k(\alpha_i)$, para $i = 1, \dots, s$, con $\sigma_{i|k}$ =id. Por el teorema de unicidad de cuerpos de descomposición, como K es un cuerpo de descomposición de f sobre $k(\alpha_i)$, para $i = 1, \dots, s$, entonces cada σ_i se extiende a un automorfismo de K, que seguimos denotando igual, que está en Gal(K|k).

Para probar que K|k es normal, sea $z \in F(Gal(K|k))$, y por la nota 9.1.9, $z \in F(Gal(K|k(\alpha_1)))$. Por la hipótesis de inducción $K|k(\alpha_1)$ es normal y $z \in k(\alpha_1)$. Luego

$$z = c_0 + c_1 \alpha_1 + \ldots + c_{s-1} \alpha_1^{s-1}$$

con $c_i \in k$, para $j = 1, \ldots, s - 1$. Aplicando σ_i , para $i = 1, \ldots, s$ nos queda

$$z = \sigma_i(z) = c_0 + c_1\alpha_i + \ldots + c_{s-1}\alpha_i^{s-1}.$$

Luego el polinomio $(c_0 - z) + c_1 X + \ldots + c_{s-1} X^{s-1} \in K[X]$ tiene grado $\leq s - 1$ y s raíces distintas $\alpha_1, \ldots, \alpha_s$. Entonces es 0 y $z = c_0 \in k$.

COROLARIO 9.2.11. Sea K|k extensión normal y $k \subset L \subset K$. Entonces K|L es normal.

Demostración. Si K es el cuerpo de descomposición de un polinomio separable $f(X) \in k[X]$, entonces podemos ver $f(X) \in L[X]$ para cualquier subcuerpo L de K que contenga a k. Por tanto, la extensión K|L es de Galois.

9.3. Teorema fundamental de la teoría de Galois.

DEFINICIÓN 9.3.1.— Sea $f(X) \in k[X]$ separable y K su cuerpo de descomposición sobre k. Entonces el grupo

$$G_f = \{ \sigma \in \operatorname{Aut}(K) : \sigma_{|k} = id \}$$

se llama grupo de la ecuación f(X) = 0 o del polinomio f(X).

TEOREMA 9.3.2.— Teorema Fundamental de la Teoría de Galois. Sea $f(X) \in k[X]$ un polinomio separable, K su cuerpo de descomposición sobre k y G el grupo del polinomio

f(X). Sean \mathcal{G} el conjunto de subgrupos de G y \mathcal{F} el conjunto de subcuerpos intermedios entre k y K. Sean las aplicaciones

$$\begin{array}{cccc} \Phi: & \mathcal{F} & \longrightarrow & \mathcal{G} \\ & L & \longmapsto & \operatorname{Gal}(K|L) \end{array}$$

у

$$\begin{array}{ccc} \Psi: & \mathcal{G} & \longrightarrow & \mathcal{F} \\ & H & \longmapsto & F(H) \end{array}$$

Se verifica

- 1. Φ y Ψ están bien definidas, son una la inversa de la otra e invierten las inclusiones.
- 2. Para cada $H_1 \subset H_2 \in \mathcal{G}$ se tiene

$$\frac{|H_2|}{|H_1|} = [F(H_1) : F(H_2)].$$

- 3. Para cada $\sigma \in G$ y para cada $H \in \mathcal{G}$, $\Psi(\sigma H \sigma^{-1}) = \sigma(\Psi(H))$.
- 4. $H \triangleleft G$ si y sólo si F(H)|k es normal, y en ese caso,

$$\operatorname{Gal}(F(H)|k) \approx G/H.$$

Demostración. Dado un subgrupo H de G obtenemos un único cuerpo fijo L=F(H) por el corolario 9.2.4 (a grupos distintos corresponden cuerpos distintos). Entonces la aplicación Ψ es inyectiva.

Si L es un subcuerpo de K que contiene a k, entonces la extensión K|L es de Galois, por el corolario anterior, y esto significa que F(Gal(K|L)) = L. Así, hemos probado que todo subcuerpo L de K que contiene a k es el cuerpo fijo de un subgrupo de G. La correspondencia Ψ es entonces sobreyectiva.

Ya hemos visto que estas aplicaciones invierten las inclusiones, lo que termina de probar el primer apartado.

Si L = F(H) entonces el teorema 9.2.1 nos dice que [K:L] = |H|. Entonces, si $H_1 \subset H_2$ son subgrupos de G se tiene que

$$[K:F(H_1)] = |H_1|, [K:F(H_2)] = |H_2|.$$

Tras dividir y aplicar la fórmula del grado obtenemos

$$\frac{|H_2|}{|H_1|} = \frac{[K : F(H_2)]}{[K : F(H_1)]} = [F(H_1) : F(H_2)].$$

En particular, $|G| = [K : k], [F(H) : k] = \frac{|G|}{|H|}$.

Para el siguiente apartado, sea $\sigma \in G$ y L = F(H). Si $z \in \sigma(F(H))$ entonces $z = \sigma(\alpha)$ con $\alpha \in F(H)$ y

$$(\sigma h \sigma^{-1})(z) = \sigma h \sigma^{-1} \sigma(\alpha) = \sigma h(\alpha) = \sigma(\alpha) = z$$
 para todo $h \in H$.

Entonces $z \in F(\sigma H \sigma^{-1})$ y $\sigma(F(H)) \subset F(\sigma H \sigma^{-1})$. Por otro lado, el grupo que deja invariante a $\sigma(F(H))$ tiene orden igual a $[K:\sigma(F(H))]$, porque

$$|\operatorname{Gal}(K|\sigma(F(H)))| = [K : \sigma(F(H))],$$

y como F(H) y $\sigma(F(H))$ son isomorfos entonces

$$[K : \sigma(F(H))] = [K : F(H)] = |H|.$$

Hemos llegado a

and a
$$\sigma F(H) \subset F(\sigma H \sigma^{-1}) \subset K,$$

$$[K:\sigma(F(H))] = |H|, \qquad [K:F(\sigma H \sigma^{-1})] = |\sigma H \sigma^{-1}| = |H|$$

luego son iguales.

Sea ahora H un subgrupo normal de G. Como para todo $\sigma \in G$ se tiene que $\sigma H \sigma^{-1} = H$, por el apartado anterior vemos que $\sigma(F(H)) = F(H)$ para todo $\sigma \in G$. Es decir, la acción de G sobre K estabiliza F(H). Podemos considerar el siguiente homomorfismo de grupos

$$\varphi: \ G \to \operatorname{Aut}(F(H)|k)$$
$$\sigma \mapsto \sigma_{|F(H)}$$

Tenemos que

$$\ker(\varphi) = \{ \sigma \in G | \varphi(\sigma) = id_{F(H)} \} =$$
 {automorfismos de K que dejan fijo a $F(H) \} = H$.

Sea $G' = \operatorname{im} \varphi$. Entonces $G/H \simeq G'$, que es subgrupo de $\operatorname{Gal}(F(H)|k)$. Por tanto, $|G/H| \leq |\operatorname{Gal}(F(H)|k)|$. Además, |G/H| = |G|/|H| = [F(H):k]. Por otro lado, siempre tenemos que $|\operatorname{Gal}(F(H)|k)| \leq |F(H):k|$, por lo que

$$[F(H):k] = |\operatorname{Gal}(F(H)|k)|.$$

Por el corolario 9.2.4 se tiene que $F(\operatorname{Gal}(F(H)|k)) = k$ y entonces F(H)|k es una extensión normal. Además, en este caso $G/H \simeq G' = \operatorname{Gal}(F(H)|k)$.

Recíprocamente, supongamos que F(H) es normal sobre k, con H subgrupo de G. Escribamos $F(H) = k[\alpha_1, \ldots, \alpha_m]$. Si $\sigma \in G$ entonces $\sigma(\alpha_i)$ es una raíz del polinomio mínimo de α_i sobre k. Entonces $\sigma(\alpha_i) \in F(H)$. De aquí, $\sigma(F(H)) = F(H)$, y por el apartado anterior $\sigma H \sigma^{-1} = H$.