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Riemann hypothesis (1859):

the complex zeros of the classical zeta
function             all have real part equal to 1/2
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Long history:
• 8th Hilbert problem (1900)
• 1st Smale problem (2000)
• Millennium problem (2000)



 Polya and Hilbert conjecture (circa 1910):

There exists a self-adjoint operator H
whose discrete spectra is given by the
imaginary part of the Riemann zeros,
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The problem is to find H: the Riemann operator

This is known as the spectral approach to the RH



    Outline

• The Riemann zeta function
• Three hints for an spectral interpretation of Riemann zeros
• The Berry-Keating/Connes model
• Landau version of the H = xp model

Based on:

“Landau levels and Riemann zeros”
G.S. and  P.K.Townsend
Physical Review Letters 2008 (arXive:0805.4079)

“A quantum mechanical model of the Riemann zeros”
G.S. New Journal of Physics 2008 (arXive:0712.0705)
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Zeta(s) can be written in three different “languages”

Sum over the integers (Euler)

Product over primes (Euler)
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Product over the zeros (Riemann)
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" (x) : Number of primes less than x

! 

" (100) = 25e.g.

The asymptotic distribution of primes is given by Gauss law:

! 

" (x) #
x

log x
, x$% Prime number theorem 

Hadamard - Vallée-Poussin (1896)
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The prime numbers appear almost at random

The RH puts a bound to the deviation of the Gauss law:
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RH : true" # (x) $ Li(x) % c x log x, x&'

If RH is true then “there is music in the primes”    (M. Berry)
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                           The Riemann landscape:
The height is the log of the modulus and the color is the phase of



number of Riemann zeros in the box 

! 

0 < Re s <1, 0 < Ims < E

It is given by
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In the limit E >> 1 the smooth part behaves as
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N fl (E) =O(logE)The fluctuation part is

smooth part ->

fluctuation part ->
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NR (E) : step function (black)

N(E) : smooth function (red)

N(E) +1/2 : smooth function (blue)
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Duality of the zeta function
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Maps the critical line into itself:
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Functional relation:



A generalization of zeta(s): Dirichlet L-functions
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There are even and odd L-functions which come with
 a 1/4 and 3/4 respectively  in the duality relation

All Dirichlet-L functions satisfy the Riemann hypothesis





Montgomery-Odlyzko law
 (70´s-80´s):

MO-law: Riemann zeros satisfy the GUE distribution law

H: random NxN matrix -> random eigenvalues

Eigenvalues satisfy statistical laws that fall into 3 universality classes
described by Random Matrix Theory (RMT)

GOE:  gaussian real symmetric matrices
GUE:  gaussian hermitean matrices
GSE:  gaussian symplectic matrices 



Two-point correlation function

Fig 1: first         zeros

Fig 2: 79 millions of zeros around n=

Numerical comparison between
RMT and the statistics of Riemann zeros
(Odlyzko)

Conjecture: Riemann Hamiltonian breaks time reversal

! 

Time reversal : t"# t

In physical applications (nuclear physics, 
condensed matter, etc) the GUE describes 
systems where the time reversal symmetry
 is broken
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         Berry´s quantum chaos conjecture (80´s-90´s):
Riemann zeros are spectra of a quantum chaotic system

Analogy between the number theory formula:
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Periodic trayectory (")# prime number (p)

Period (T" ) # log p

! 

Pr ime numbers " Riemann zeros

Time " Energies

Classical " Quantum



Selberg trace formula (1956)

! 

"#$n (x,y) = En$n (x,y), En =
1

4
+ kn

2

  

! 

h(kn ) =
µ(D)

4"
dk k h(k)tanh(" k)

#$

$

% + l p

p.p.o.

&
g(nl p )

2sinh(nl p /2)n=1

$

&
n

&

Riemann surface with negative curvature

Classical problem: compute the length          of the geodesics
Quantum problem: compute the spectrum of the Laplacian
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There is a “classical-quantum” correspondence given by

where h(k) is a test function, g(k) its Fourier transform
The sum is over primitive periodic orbits (p.p.o.)

This reminds the Riemann-Weyl explicit formula
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• In 1999 Berry and Keating proposed that
the 1D classical Hamiltonian  H = x p,
when properly quantized, may contain in
the spectrum the Riemann zeros

• This result would imply a proof of the RH
• The Berry-Keating proposal was parallel to

Connes adelic approach to the RH.

These approaches are semiclassical



Classically  H =   x p  gives the trayectories
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Time Reversal Symmetry is broken (                         )
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Semiclassical approach to H = xp 
   (Berry-Keating and Connes)



Berry-Keating regularization
Planck cell in phase space:
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x > lx, p > lp, h = lx lp = 2" (h =1)

Number of semiclassical states

Agrees with number of zeros asymptotically (smooth part) !!!
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Connes regularization
              Cutoffs in phase space:
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x < ", p < "

Number of semiclassical states

As                    spectrum = continuum - Riemann zeros 
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1) Which one is right?
2) Quantum version of these semiclassical models?

Two spectral scenarios: 

Emission (Berry-Keating) 
                or 
Absortion (Connes)





Lagrangian of a 2D charge particle in a uniform magnetic field B
in the gauge A = B (0,x): 
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Classically, the particle follows cyclotronic orbits:
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Quantum mechanics: 1D harmonic oscillator
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Landau energy levels

n=0 is the Lowest Landau Level (LLL): huge  degeneracy

Semiclassically the n=0 orbits are circles of radius
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Wave functions of  the LLL in a box                (units           )
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LLLL = p
dx

dt
"HLLL # HLLL = 0

Effective Hamiltonian of the LLL

Projection to the LLL is obtained in the limit
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This implies that x and p are the conjugate variables

In the quantum model
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All the states in the LLL have the same energy



Add an electrostatic potential xy to the Landau Lagrangian: 

Classical equations of motion have two normal modes: cyclotronic and hyperbolic 
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In the limit
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The effective Lagrangian of the LLL is: 
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Hence the effective Hamiltonian of the LLL is: 
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HLLL = "h x p

Which is the classical Berry-Keating-Connes Hamiltonian!!



Interpretation of the xp model from the Landau model perspective 

! 

x(t) = x
0
e
t
, p(t) = p

0
e
"t
, E = x

0
p
0

Recall the classical trayectories of the xp model

Since                , they represent the hyperbolic motion of the electron 
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The phase space of the xp model
becomes essentially the x-y plane



Semiclassical counting of states

Put the electron in a box LxL
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x < L, y < L

is analogue to Connes regularization of H= xp 
There is a maximum for the classical energy in units of 
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For large           the number of semiclassical states with energy 
less than E is the number of quantum fluxes in the area below the curve 
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Quantum derivation of Connes semiclassical result
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In the limit                      the transformation simplifies 

! 

"
c
>> "

h

! 

q = x + py, p = px, Q = "py, P = y + px

Eigenfunctions of H: 
  

! 

"E

±
(q,Q) = e

#q 2 / 2l 2 $ %E
±
(Q)

Eigenfunctions of Hh:

! 

"
E

+
(Q) =

1

Q
1/ 2# i E

, "
E

#
(Q) =

sgn(Q)

Q
1/ 2# i E



Define the normal ordered operator in the half-line
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H is a self-adjoint operator: eigenfunctions

Normalization appropiate to the continuum
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Quantization of H = xp

On the real line H is doubly degenerate with even and odd
eigenfunctions under parity
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Eigenfunctions of the Landau model

  

! 

"E
±
(x,y) = C dQ e

# iQ y / l
2

e
#(x#Q )2 / 2l

2

"E
±
(Q)$

  

! 

"E
+
(x,y) = CE

+
e
#x 2 / 2l

2

M
1

4
+
i E

2
,
1

2
,
(x # i y)2

2l
2

$ 

% 
& 

' 

( 
) 

"E
#
(x,y) = CE

#
(x # i y) e#x

2
/ 2l

2

M
3

4
+
i E

2
,
3

2
,
(x # i y)2

2l
2

$ 

% 
& 

' 

( 
) 



Matching condition on the boundaries (even functions)
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Taking the log and L >>1

This is the Connes formula
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Landau realization of Berry-Keating model 
(work in progress with P. Townsend and J. Rodriguez-Laguna)

Restrict the electron to move on the quadrant
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x " l, y " l

Impose periodic boundary conditions   
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The smooth Riemann zeros appear as eigenstates



Berry has said that if the dynamical system related to the Riemann zeros
can be identified, then he is

”absolutely sure that someone will find a clever way to make
it in the lab. Then you'll get the Riemann zeros out just by
observing its spectrum”.

A possibility suggested by the Landau approach for this Lab realization is 
a quantum corral trapping a single electron: 

Number of zeros 
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• We have given a quantum mechanical version of the
H = xp model as the effective Hamiltonian of an
electron moving in 2D under the action of a uniform
magnetic field and a electrostatic potential.

• Connes version of xp is recovered quantum
mechanically putting the electron in a box.

• Berry-Keating version of xp seems to be recovered
imposing certain periodic boundary conditions.

• The later version seems more promising but further
work is needed to clarify this issue

• The Riemann Hypothesis will continue to be an open
problem for a while….


