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A mathematical problem  /_,

Riemann hypothesis (1859):

the complex zeros of the classical zeta
function ¢(s) all have real part equal to 1/2

1
s(s,)=0,s5s, €EC —s, =§+iEn, E eNRNneZ

Long history:

 8th Hilbert problem (1900)
« 1st Smale problem (2000)
* Millennium problem (2000)
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Polya and Hilbert conjecture (circa 1910):

There exists a self-adjoint operator H
whose discrete spectra is given by the
imaginary part of the Riemann zeros,

Hy )=E, |p,)=E, ER= RH : True

This is known as the spectral approach to the RH

The problem is to find H: the Riemann operator



Outline

« The Riemann zeta function

« Three hints for an spectral interpretation of Riemann zeros
* The Berry-Keating/Connes model

« Landau version of the H = xp model

Based on:

“Landau levels and Riemann zeros”’
G.S. and P.K.Townsend
Physical Review Letters 2008 (arXive:0805.4079)

“A quantum mechanical model of the Riemann zeros”
G.S. New Journal of Physics 2008 (arXive:0712.0705)






The zetaiunction: Rosetta Stone i Maths;

Zeta(s) can be written in three different “languages”

Sum over the integers (Euler) c(s) = Eis , Re s>1

Product over primes (Euler) G(s) = Res>1

Product over th Riemann) 5(s) = T [1--
roduct over the zeros (Riema 2(s—= DI+ 5/2) , o




Order in the prime numbers;

J‘L’(x) .| Number of primes less than x

e.g. m(100)=25

The asymptotic distribution of primes is given by Gauss law:

T(x)~—>— x-—>c  Prime numbertheorem
log x Hadamard - Vallée-Poussin (1896)
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Disorder in the prime numbers

The prime numbers appear almost at random

The RH puts a bound to the deviation of the Gauss law:

RH : true < ‘J‘L’(X) — Li(x)‘ <cC \/Elog X, X—=>0

R(x)- 7(x)
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If RH is true then “there is music in the primes” (M. Berry)




k look to the zeta function
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The Riemann landscape:
The height is the log of the modulus and the color is the phase of Q(S)




Counting non trivial zeros

NR (E) - number of Riemann zeros in the box

O<Res<l, O<Ims< E

It is given by Ng(E)=(N(E))+ N ,(E)

smooth part -> (N(E)) = lArgl“(i+ éE)—zﬁlogn+l
JU JU

fluctuation part-> N (E) = lArg g(% +iFE)
JU

In the limit E >> 1 the smooth part behaves as

E E 7
<N(E)>~E(log§—l)+§+---

The fluctuation part is N ,(E)=0(ogE)



N.(E): step function (black)
<N (E )> . smooth function (red)
<N (E )> +1/2: smooth function (blue)
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Duality of the zeta function

r(l — S)
ns—1/2 g(l _ S)

Functional relation: s(s) = =
|
(5)
TR 1. 1
Maps the critical line into itself: $=5+ iE el—s=5_lE
1 F[i+ lf] 1 1
— —iE|=x"" L) 2w (L
5’(2 zE) T F/I_iE\ g(2+zE) e g(2+zE)
\4 2

P(E) : phase of c(1/2 —iFE)

G (E) N

(N(E)) = 1




A generalization of zeta(s): Dirichlet L-functions

x(n):Dirichlet character 1.(s,5) = i X (Z’) . Rs=>1

n

Example: L(s,x,) = i (2(;1)1) , Rs>1

( E
| I j +l2 / |
L. _ o —iE \ 1 .

L(2 zE,X4) T e \L(2+1E,X4)

\4 2/

There are even and odd L-functions which come with
a 1/4 and 3/4 respectively in the duality relation

All Dirichlet-L functions satisfy the Riemann hypothesis



Three hints for an
spectral realization
of Riemann zeros

- Mentgemer-Qelake law
- Berry comjecture
- Sellverg) trace formula



Montgomery-Odlyzko law
(70°’s-80°s):

2

H: random NxN matrix -> random eigenvalues

Eigenvalues satisfy statistical laws that fall into 3 universality classes
described by Random Matrix Theory (RMT)

GOE: gaussian real symmetric matrices
GUE: gaussian hermitean matrices
GSE: gaussian symplectic matrices

MO-law: Riemann zeros satisfy the GUE distribution law



]
Numerical comparison between e
RMT and the statistics of Riemann zeros
(Odlyzko)
Two-point correlation function :L‘;;
Fig 1:first 10° zeros ot et s e

“On the distribution of spacings between zeros of the zets functica,” AM. Odlyzko, Mathematics
of Computation pages 273-308 (1987), by permission of The American Mathematical Socicty.

Fig 2: 79 millions of zeros around n= 10

In physical applications (nuclear physics, B
condensed matter, etc) the GUE describes

systems where the time reversal symmetry
IS broken /

f

Time reversal: t— —t Z y

Figure 111, The same as Figare 1.9, but for 79 million zeros aroend a #= 102, From Odlyzko
(1989). Copyright © 1989 American Telephone and Telegraph Company, reprinted with permis-
sion.

Conjecture: Riemann Hamiltonian breaks time reversal




1.4. of Level Correlations 11
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Figure 1.2, Some typical level sequences. From Bobigas and Giannced (1984). (n) Random levels
with no carrelations, Poisson series. (b) Sequence of prime nambers. (¢) Slow scutron resonance
levels of the eshium 166 nuckcus. (&) Possible energy Jevels of a particle froe to move inside the
arca bounded by 1/8 of a square and a circular arc whose center is the mid point of the square;
ie. the arca specified by the inoqualities, y = 0, x >y, x €1, and x? + y? > r. (Sinai's billiard
nbla)(e)?hemof&elﬁmmmtumﬁmm@lﬁnhz:I/l(f)Awof

equally spaced levels (Bohigns and Giannond, 1984).



Berry's quantum chaos conjecture (80°s-90°s):
Riemann zeros are spectra of a quantum chaotic system

Analogy between the number theory formula:

ﬂ(E)_‘_EE

pmlmp

_sin(m E log p)

and the fluctuation part of the spectrum of a classical chaotic Hamiltonian

NalE)= EE mzsmh(mA 2) sinlm )

y m=1

Periodic trayectory (y) <> prime number (p)

Period (T.) < logp

Prime numbers < Riemann zeros
Time <> Energies

Classical < Quantum



Selberg trace formula (1956)

Riemann surface with negative curvature

Classical problem: compute the length fp of the geodesics
Quantum problem: compute the spectrum of the Laplacian

Ay (6 =E,p (x,y), E, = i e

There is a “classical-quantum” correspondence given by

: /
Eh(k )= (D)fdkkh(k)tanh(nk) ; Ez EZsif}(l?n;)/Z)

where h(k) is a test function, g(k) its Fourier transform
The sum is over primitive periodic orbits (p.p.o.)

This reminds the Riemann-Weyl explicit formula

2,11 = f—h( )—(—+—) 2210gp2p * g(nlog p) + ctes

primes



The Berry-Keating/Gonnes model
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The Berry-Keating/Gonnes model:

n 1999 Berry and Keating proposed that
he 1D classical Hamiltonian H = x p,

when properly quantized, may contain in

t

ne spectrum the Riemann zeros
"his result would imply a proof of the RH

"he Berry-Keating proposal was parallel to

Connes adelic approach to the RH.

These approaches are semiclassical




Classically H= xp gives the trayectories

x()=x ¢ ,pt)=p, e ,E=x,p,

x

Time Reversal Symmetry is broken ( y >y, p—=>-p )



Berry-Keating regularization
L, b=l =23 (h=1)

Planck cell in phase space: ‘x‘ >

E/l 5

Berry—Keating cutoffs

Number of semiclassical states N _(E)~—log— -

Agrees with number of zeros asymptotically (smooth part) !!!



Connes regularization

Cutoffs in phase space: ‘x‘ <A, ‘ p‘ <A

Connes cutoffs

2
Number of semiclassical states NSC(E)zilog A_E log ELE

+
27 20 27 20 27

As A — oo spectrum = continuum - Riemann zeros



Two spectral scenarios:

Emission (Berry-Keating) %
or —
Absortion (Connes)

1) Which one is right?
2) Quantum version of these semiclassical models?



Landau version of
the i = Xp model




Brief review of the Landauw model

Lagrangian of a 2D charge particle in a uniform magnetic field B
in the gauge A = B (0,x):

(&)%)

Classically, the particle follows cyclotronic orbits:

LM
2




Quantum mechanics: 1D harmonic oscillator

1 (z Jd
H=hw.(a*a+1/2), a,a*|=1, a=—(—+2—)
[aa”] 2
Landau energy levels

E =ho (n+1/2), n=0,2....

n=0 is the Lowest Landau Level (LLL): huge degeneracy

Semiclassically the n=0 orbits are circles of radius

0= /E (magnetic length)
eB

Number of states in the LLL in an area A is

A AxB ®  Total flux _N
2al* hcle ®, Quantum flux —°

L




Wave functions of the LLL inabox L xL, (units {=1 )

1 ik,y —(x—k,)?/2
W(X,Y) = e’ ’
nuaﬁu

y

o

[x

=3k

-}

2an 27T

Boundary conditions ~ Y(x,y+L)=y(x,y) =k, =

Degeneracy N, = Lo _ Lo _ L.L _A

Ax Ak 2 27w

y



Effective Hamiltonian of the LLL

Projection to the LLL is obtained in the limit

W, — o < ‘ue()

2 2
Lt (o) en e, oy, e,
21\ dt dt c dt c dt
. hy dx
Define p=€_2 — L, =pz

This implies that x and p are the conjugate variables

In the quantum model [x,p] =ih

dx
Ly = pE_HLLL = H,,, =0

All the states in the LLL have the same energy



Landau model and Riemann zeros

Add an electrostatic potential xy to the Landau Lagrangian:

%) ()

Classical equations of motion have two normal modes: cyclotronic and hyperbolic

L=

2

2
W, = ﬁcoshﬁ w, —zQsmhf} (sinh(20)=2)wc )

uc uc e B’

"3exact’  +




In the limit @, >>|w,] w, =2, o, =il

and only the lowest Landau level is relevant

The effective Lagrangian of the LLL is:
LLLL=px_‘a)h‘xp’ p=—s, 0'=—

Hence the effective Hamiltonian of the LLL is;

H,;,, = |wh|xp

Which is the classical Berry-Keating-Connes Hamiltonian!!



Interpretation of the xp model from the Landau model perspective

Recall the classical trayectories of the xp model

x(t)=x0 et 9p<t)=p() e_t ,E=X0 pO

Since p= Z_y , they represent the hyperbolic motion of the electron

x(t)=x,¢ ,y(t)=y, e E= XO yo ([hw,|=1)

The phase space of the xp model
becomes essentially the x-y plane

4/'




Semiclassical counting of states
Put the electron in a box LxL x|<L, |y|<L

is analogue to Connes regularization of H= xp
There is a maximum for the classical energy in units of 7w,

For large % the number of semiclassical states with energy
less than E is the number of quantum fluxes in the area below the curve

xy=E/’

E I’ E
N (E)= lo —
(B 2 g2n€2 2

logi—l

which agrees with Connes counting formula



There is a unitary transformationto H=H.+H,

H ==c(p"+q’). H,=TH(QP+PQ)

In the limit @, >> |(Uh| the transformation simplifies
gq=x+p,, p=p,, Q=-p,, P=y+p,

Eigenfunctions of H: Y5 (q,0) = e 1 % ¢, (0)

0 o S8(Q)
Eigenfunctions of Hh: ¢E(Q)—|Q|1/2_,.E, ¢E(Q)—|Q|1/2_,~E



Quantization of H = xp

Define the normal ordered operator in the half-line

d 1

] .
HO=5(xp+px)=—z(xa+5) 0<x<®

H is a self-adjoint operator: eigenfunctions

1 1
¢E(x)=mx1/z—m

Normalization appropiate to the continuum F & h

(005 ) = [ dx ¢3(x) ¢ (x) = S(E - E")

On the real line H is doubly degenerate with even and odd
eigenfunctions under parity

. 1 1 _ 1 sign(x)
X) = — X)= .
¢E( ) ,27[,' |x|l/2—lE ¢E( ) /2.7'[ |x|l/2—lE




Eigenfunctions of the Landau model

9;(x,y)=C [dQe " " 42(Q)

e 1 PE 1 (x=iy)’
+X, =C+€X/MM_+ —,

. N
§+1E 3 (x-iy) )

po(x,y)=Cy(x—iy)e™ > M

4 272 207




Matching condition on the boundaries (even functions)

F(i+%] 2 —iE
+ _ iLx/0% + s _
¢p(x,L) =e ¢p(L,x) F/l_g\ (2£2) 1
\4 2
Taking the log and L >>1
N(E) = £1o L - (N(E))
27 g2 ml?

This is the Connes formula



Landau realization of Berry-Keating model
(work in progress with P. Townsend and J. Rodriguez-Laguna)

Restrict the electron to move on the quadrant  x =/, y={

Impose periodic boundary conditions  Y(/,t) =y(t,0), Vit=/

L 1 L L L 1
0 50 100 150 200 250 300 350 400

The smooth Riemann zeros appear as eigenstates



Berry has said that if the dynamical system related to the Riemann zeros
can be identified, then he is

"absolutely sure that someone will find a clever way to make
it in the lab. Then you'll get the Riemann zeros out just by
observing its spectrum”.

A possibility suggested by the Landau approach for this Lab realization is
a quantum corral trapping a single electron:

Number of zeros =~2.5x10" (B=1Tesla, Area=1m")



Conclus uggestions

We have given a quantum mechanical version of the
H = xp model as the effective Hamiltonian of an
electron moving in 2D under the action of a uniform
magnetic field and a electrostatic potential.

Connes version of xp is recovered quantum
mechanically putting the electron in a box.

Berry-Keating version of xp seems to be recovered
Imposing certain periodic boundary conditions.

The later version seems more promising but further
work is needed to clarify this issue

The Riemann Hypothesis will continue to be an open
problem for a while....



