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On meromorphic functions defined
by a differential system of order 1

Let X denote a complex analytic manifold of dimension n (n > 2). Let Ox
denote the sheaf of holomorphic functions on X, Dx the sheaf of differential
operators with holomorphic coefficients and F,D its filtration by order. At
a point m € X, we will identify the stalk Ox,, (resp. Dx,,) with the ring
O =C{x1,...,zn} (resp. D = 0(0/0x1,...,0x,)).

In this lecture, D C X denotes a divisor on X, and hp € O will be a
reduced equation of D in a local chart.

1 Introduction
Let us recall the result given at the end of the first lecture.
THEOREM 1.1 ([3]) Let D C X be a Koszul-free divisor. Then the inclusion:
0% (log D) — Q% (+D)
s a quasi-isomorphism if and only if the natural morphism
¢ : M(log D) = Dx @yp p) Ox (D) — Ox(xD)
18 an isomorphism.

Here Ox (xD) is the Dx-Module of meromorphic functions with poles along
D. Locally, this morphism ¢p is:

©p :D/I* — O[1/hp]
1
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where I'°9 C D is the left ideal generated by Annp 1/hp N F1D. Moreover, it
is bijective if and only if the two conditions are verified:

A(1/hp): The left ideal Annp 1/hp C D of operators annihilating 1/hp is
generated by operators of order 1.

B(hp): The D-module O[1/hp] is generated by 1/hp.

The aim of this course is to explain as simply as possible what means these
conditions. We need to recall some facts about Bernstein polynomials.



2 On the Bernstein polynomial

2.1 Definition and properties

Let f € O be a nonzero germ of holomorphic function. We denote by D[s] the
ring D ®c CJs| of differential operators with coefficients in O[s], where s is a
new variable.

THEOREM 2.1 ([5]) There exists a functional equation such that:
b(s)f* = P(s)- f** (1)
where P(s) € D[s] and b(s) € Cls] are nonzero.

This identity is verified in O[1/f, s]f*, where f* is a formal symbol which
twists the natural D-structure of O[1/f,s]. For example:

a s _ S fd/fz S
axi-af =ay. f —I-Sfaf

where a € O[1/f, s] and we denote by f*** the element f*. f5 k€ Z.
It is easy to see that the set of polynomials verifying such an identity (1)
is an ideal. As CJs] is a principal ring, this ideal is principal. So, we have:

DEFINITION 2.2 The Bernstein polynomial of a nonzero germ f € O - denoted
by b(f*%,s) - is the monic generator of the ideal of polynomials b(s) which

verifies (1).

REMARK 2.3 If f(0) # 0 then b(f*,s) = 1 since f* = f~!. f5*1. On the other
hand, (s+ 1) is a factor of b(f*,s) when f(0) = 0. Indeed, if we fix “s=-1” in
(1), we get: b(—1)/f = P(—1) - 1. In particular, b(—1) € fO, and then b(—1)
is zero (since f(0) = 0).

So without loss of generality, we will always assume that f(0) = 0. Let us
give an elementary example.

EXAMPLE 2.4 Let f be the first coordinate ;1. From the following identity:
(s + 1)a5 = (8/0xy1) - 25, (s + 1) is a multiple of b(f*,s). With the help of
the previous remark, we can also conclude that b(f*,s) = (s + 1).

Finally, let us recall that M. Kashiwara proved that the roots of b(f*,s)
are strictly negative rational numbers ([5]). More precisely, M. Saito proved
the following result.

THEOREM 2.5 ([10]) Let f € O be a nonzero germ and let By C Q™ denote
the set of the roots of b(f*,s). Then By C|] —n,0|.



2.2 Interest

Let us give three reasons to be interested in this notion.

2.2.1 Meromorphic continuation

At first, this polynomial was introduced by I. N. Bernstein in order to have
a meromorphic continuation of special distributions. For example, given a
(n,n)-differential form ¢ € C°(Q2) with compact support in a neighborood
Q of 0. Let us consider the function: G,(A\) = [, |f[?*¢, A € C. It is easy
to check that it is holomorphic on Re(\) > 0, and that the existence of the
Bernstein polynomial b(s) of f allows to get a meromorphic continuation of

Gy(A) on C.

Indeed, from the identities: b(\)f* = P(\)- AL and b\ F = PO\)-F
we get: b(A)b(N)|f|*} = PP(A) - |f|**2. Hence, if A is not a root of b(s)b(s),

we have:

- (1) (P py*
Go) = s VPP

g

G@pyre (A1)

where G(ﬁP)*wO‘—H) is holomorphic on Re(\) > —1. By iterating this process,
we obtain a meromorphic continuation of G,(\) on C.

2.2.2 Monodromy of f: (C",0) — (C,0)

The more important result about Bernstein polynomial is the link of its roots
with the monodromy of the Milnor fibration associated with f. This was first
discovered by B. Malgrange for isolated singularities, and generalised by M.
Kashiwara in general case ([7], [6]). More precisely, we have the following
result.

THEOREM 2.6 Let f : (C™,0) — (C,0) be a nonzero germ of holomorphic
function. Let Ey C C be the set of the eigenvalues o of the monodromy acting
on the cohomology of the fibers of the Milnor fibrations of f around the singular
points of f~1(0) close enough to 0.

Then the application X\ — exp(—2im\) induces a sujective map from By to
Ey.

2.2.3 Finiteness of O[1/f]

Let us remark that O[1/f] is not a O-module of finite type (since f(0) = 0).
However, we have the following result.

PROPOSITION 2.7 Let f € O be a nonzero germ. Then O[1/f] is a D-module
of finite type.



Proof. If —/ is the smallest integral root of b(f*, s), then we have:

1 1
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where b(—¢ — k) # 0 for all £ € N*, using an identity (1) which realises the
Bernstein polynomal of f. In particular 1/f‘"* belongs to D - 1/f¢, k € N*,
ie. D-1/f* =0[1/f]. O

This result is very useful in effective algebraic geometry, when one needs
a resolution of O[1/f]. Indeed, the first step is also the computation of the
Bernstein polynomial of f in order to determinate its smallest integral root
(see [8], [9]). Let us mention that the reverse result is true.

PROPOSITION 2.8 ([1], [5]) Let f € O be a nonzero germ such that f(0) =0
and £ € N*. The following conditions are equivalent :

1. The smallest integral root of b(f*,s) is strictly greater than —¢ — 1.
2. The D-module O[1/f] is generated by 1/ f*.

3 LCT(D) and D-modules

From the previous result, the condition B(hp) introduced in the introduction
just means: —1 is the only integral root of b(hf,, s) (since its roots are negative.)
This fact confirms that the D-Module viewpoint is pertinent in order to get a
best understanding of the condition LCT(D).

Moreover, one can prove that the conditions A(1/hp) and B(hp) are
linked.

PROPOSITION 3.1 [12] Let h € O be a nonzero germ such that h(0) = 0.
Assume that the ideal Annp 1/h is generated by operators of order one. Then
the condition B(h) is verified.

EXAMPLE 3.2 If h = 22 +--- 4+ 22, then b(h®,s) = (s + 1)(s + 2) and one can
check that Annp1/h is generated by the operators x;(0/0z;) — x;(9/0x;),
1<i<j<4,21(0/0x1)+ - +24(0/0x4) +2 and (0/0x1)? +- -+ (0/0x4)>.

Thus the condition A(1/hp) is a local analogue of LCT (D) for Koszul-free
divisors. Is it true for any germ A 7 This is true for the weighted-homogeneous
hypersurfaces with an isolated singularity (see [11], [4] and below). Moreover,
A(1/hp) is true for generic arrangements, and this agrees with Terao’s con-
jecture (see the first lecture and [12]). The general problem is still open.
Meanwhile, this gives a hope for a best understanding of LCT (D), since it is
easier to work with condition A(1/h) than with a morphism of complexes.



4 The condition A(1/h)

Let h € O be a nonzero germ such that ~2(0) = 0. We recall here the known
facts about the meaning of the condition A(1/h) (see [12]).

First, we have the following easy criterion.

LEMMA 4.1 Let h € O be a nonzero germ such that h(0) = 0. Assume that
the following conditions are verified:

H(h): h belongs to the ideal of its partial derivatives.

B(h): —1 is the smallest integral root of b(h*,s).

A(h): The ideal Annp h® is generated by operators of order 1.
Then the ideal Annp 1/h is generated by operators of order 1.

Proof. Indeed, we have also a decomposition:
Annpig h* = D[s](s — v) + D[s]Annp h*

where v is a vector field such that v(h) = h. Moreover, under the condi-
tion B(h), the ideal Annp 1/h is obtained by fixing s = —1 in a system of
generators of Annpy h® (Proposition 2.8). [J

Reciprocally, what does remain true 7 We recall that the implication
A(1/h)=B(h) is always true. On the other hand, does A(1/h) imply H(h) ?
This is true for isolated singularities ([11]), Koszul-free germs, and suspensions
of unreduced plane curve z¥ + g(x1,22) ([12]). So, one can think that it is
always true (7)

Finally, the condition A(1/h) does not imply A(h) in general. Indeed,
Calderén’s example h = z1x2(x1 4+ x2) (21 + wox3) verifies LCT (D), A(1/h),
B(h), H(h) and not A(h). So, in the identity:

1
Annp E = D(l’lal + 2909 + 4) + Annp h°

we remark that something is happening but we can not understood it with
these objects.

Meanwhile, condition A (k) is not unrealistic. Indeed, we have the follow-
ing characterization of A(1/h) for Koszul-free germs.

THEOREM 4.2 ([12]) Let h € O be a Koszul-free germ. Then Annp 1/h is
generated by operators of order one if and only if the conditions H(h), B(h)
and A (h) are verified.

Moreover, with the criterion above, we get:

If h verifies H(h) and A(h) then A(1/h) is equivalent to B(h).



For example, if h defines an isolated singularity, one can prove that:

Amph® = Y D(h,.0 — h,,0))

1<i<j<n

(see [13]). Moreover, if h is weighted-homogeneous, the Bernstein polynomial
b(h®, s) is given by a closed formula (see [13]). In particular, we find exactly
the technical condition for LCT(D) given in the first lecture (Theorem 2.1).
For example, if h = 23 + --- + 22 then we have b(h%,s) = (s + 1)(s + n/2)
whereas LCT (D) is true if and only if n is odd or n = 2.

5 The condition A(h)

In this last part, we explain why the condition A (h) may be considered almost
as a geometric condition.

Of course, the condition A (h) may be considered in terms of the D-module
Dh? (since D/Annp h* = Dh*). To this end, let us recall some classical notions
in D-Module theory.

e A nonzero differential operator P € D may be written in a unique way
as a finite sum: >, .y Pa(0/0x1)* -+ (9/0xn)*", with po € O. The
degree of P is also the integer deg(P) = max{|a|| po # 0}, and its principal
symbol is the homogeneous polynomial o(P) = 3, _qeg(p)Pali’ - &3" €
ngD = 0[517 ce 7§n]’

For example, if P = 3x1(0/0x1)% — (0/0x1)(0/0x2) + x1(0/0x2) + 1, then
deg(P) = 2 and o(P) = 371&} — &16.

e Given a nonzero coherent left ideal I C D, we denote by gr I C O[¢] the
homogeneous ideal generated by the polynomials o(P), P € I. The charac-
teristic variety charp D/I of D/I is the zero set of grI in T*C™.

For example, if I = D((0/0x1),...,(0/0zy)), then grI = (&1,...,&,)O[¢]
and charp D/I = C" x {0} C T*C".

For the coherent D-module D/Annp h® = Dh®, we have the following
result, due to M. Kashiwara.

THEOREM 5.1 ([5]) Let h € O be a nonzero germ such that h(0) = 0. The
characteristic variety of Dh® coincides with the relative conormal space:

Wi = {(z, Adh(z)) | A € C}
Now it easy to check that the following condition implies A (h):
W(h) : The relative conormal space W}, is defined by linear equations in &.

This is the reason why A (h) may be considered almost as a geometric condition
on h.



EXAMPLE 5.2 The condition W (h) is true when h defines an isolated singu-
larity, and when h locally weighted-homogeneous free germs ([2]).

REMARK 5.3 It is easy to check that the condition W (h) is equivalent to the
following one: the kernel of the morphism of graded O-algebra

OXy,....,Xn] — R(In)
Xi [— thlxz

is generated by homogeneous elements of degree 1. Here J}, denotes the jaco-
bian ideal (Al , ..., k), )O and R(Jp) is the Rees alebra @ -, Jit?. Following
a terminology due to W. Vasconcelos, one says that 7}, is of linear type (see

[2] for more details.)

REMARK 5.4 We do not have an example of a germ h verifying A (h) and not
W (h). Are these conditions equivalent ?
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