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On meromorphic functions defined
by a differential system of order 1

Let X denote a complex analytic manifold of dimension n (n ≥ 2). Let OX

denote the sheaf of holomorphic functions on X, DX the sheaf of differential
operators with holomorphic coefficients and F•D its filtration by order. At
a point m ∈ X, we will identify the stalk OX,m (resp. DX,m) with the ring
O = C{x1, . . . , xn} (resp. D = O〈∂/∂x1, . . . , ∂xn〉).

In this lecture, D ⊂ X denotes a divisor on X, and hD ∈ O will be a
reduced equation of D in a local chart.

1 Introduction

Let us recall the result given at the end of the first lecture.

Theorem 1.1 ([3]) Let D ⊂ X be a Koszul-free divisor. Then the inclusion:

Ω•X(logD) ↪→ Ω•X(?D)

is a quasi-isomorphism if and only if the natural morphism

ϕD : M̃(logD) = DX ⊗VD
0 (D) OX(D) −→ OX(?D)

is an isomorphism.

HereOX(?D) is the DX -Module of meromorphic functions with poles along
D. Locally, this morphism ϕD is:

ϕD : D/Ĩ log −→ O[1/hD]

P + Ĩ log 7−→ P · 1
hD

where Ĩ log ⊂ D is the left ideal generated by AnnD 1/hD ∩ F1D. Moreover, it
is bijective if and only if the two conditions are verified:

A(1/hD) : The left ideal AnnD 1/hD ⊂ D of operators annihilating 1/hD is
generated by operators of order 1.

B(hD) : The D-module O[1/hD] is generated by 1/hD.

The aim of this course is to explain as simply as possible what means these
conditions. We need to recall some facts about Bernstein polynomials.
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2 On the Bernstein polynomial

2.1 Definition and properties

Let f ∈ O be a nonzero germ of holomorphic function. We denote by D[s] the
ring D ⊗C C[s] of differential operators with coefficients in O[s], where s is a
new variable.

Theorem 2.1 ([5]) There exists a functional equation such that:

b(s)f s = P (s) · fs+1 (1)

where P (s) ∈ D[s] and b(s) ∈ C[s] are nonzero.

This identity is verified in O[1/f, s]fs, where fs is a formal symbol which
twists the natural D-structure of O[1/f, s]. For example:

∂

∂xi
· afs = a′xi

fs + s
f ′xi

f
afs

where a ∈ O[1/f, s] and we denote by fs+k the element fk · fs, k ∈ Z.
It is easy to see that the set of polynomials verifying such an identity (1)

is an ideal. As C[s] is a principal ring, this ideal is principal. So, we have:

Definition 2.2 The Bernstein polynomial of a nonzero germ f ∈ O - denoted
by b(f s, s) - is the monic generator of the ideal of polynomials b(s) which
verifies (1).

Remark 2.3 If f(0) 6= 0 then b(f s, s) = 1 since fs = f−1 ·fs+1. On the other
hand, (s + 1) is a factor of b(f s, s) when f(0) = 0. Indeed, if we fix “s=-1” in
(1), we get: b(−1)/f = P (−1) · 1. In particular, b(−1) ∈ fO, and then b(−1)
is zero (since f(0) = 0).

So without loss of generality, we will always assume that f(0) = 0. Let us
give an elementary example.

Example 2.4 Let f be the first coordinate x1. From the following identity:
(s + 1)xs

1 = (∂/∂x1) · xs+1
1 , (s + 1) is a multiple of b(fs, s). With the help of

the previous remark, we can also conclude that b(f s, s) = (s + 1).

Finally, let us recall that M. Kashiwara proved that the roots of b(fs, s)
are strictly negative rational numbers ([5]). More precisely, M. Saito proved
the following result.

Theorem 2.5 ([10]) Let f ∈ O be a nonzero germ and let Bf ⊂ Q− denote
the set of the roots of b(fs, s). Then Bf ⊂]− n, 0[.
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2.2 Interest

Let us give three reasons to be interested in this notion.

2.2.1 Meromorphic continuation

At first, this polynomial was introduced by I. N. Bernstein in order to have
a meromorphic continuation of special distributions. For example, given a
(n, n)-differential form ϕ ∈ C∞

c (Ω) with compact support in a neighborood
Ω of 0. Let us consider the function: Gϕ(λ) =

∫
Ω |f |2λϕ, λ ∈ C. It is easy

to check that it is holomorphic on Re(λ) > 0, and that the existence of the
Bernstein polynomial b(s) of f allows to get a meromorphic continuation of
Gϕ(λ) on C.

Indeed, from the identities: b(λ)fλ = P (λ)·fλ+1 and b(λ)fλ = P (λ)·fλ+1,
we get: b(λ)b(λ)|f |2λ = PP (λ) · |f |2λ+2. Hence, if λ is not a root of b(s)b(s),
we have:

Gϕ(λ) =
1

b(λ)b(λ)

∫

Ω
|f |2(λ+1)(PP )∗ϕ

︸ ︷︷ ︸
G(PP )∗ϕ(λ+1)

where G(PP )∗ϕ(λ+1) is holomorphic on Re(λ) > −1. By iterating this process,
we obtain a meromorphic continuation of Gϕ(λ) on C.

2.2.2 Monodromy of f : (Cn, 0) → (C, 0)

The more important result about Bernstein polynomial is the link of its roots
with the monodromy of the Milnor fibration associated with f . This was first
discovered by B. Malgrange for isolated singularities, and generalised by M.
Kashiwara in general case ([7], [6]). More precisely, we have the following
result.

Theorem 2.6 Let f : (Cn, 0) → (C, 0) be a nonzero germ of holomorphic
function. Let Ef ⊂ C be the set of the eigenvalues α of the monodromy acting
on the cohomology of the fibers of the Milnor fibrations of f around the singular
points of f−1(0) close enough to 0.

Then the application λ 7→ exp(−2iπλ) induces a sujective map from Bf to
Ef .

2.2.3 Finiteness of O[1/f ]

Let us remark that O[1/f ] is not a O-module of finite type (since f(0) = 0).
However, we have the following result.

Proposition 2.7 Let f ∈ O be a nonzero germ. Then O[1/f ] is a D-module
of finite type.
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Proof. If −` is the smallest integral root of b(f s, s), then we have:

b(−`− k)
1

f `+k
∈ D · 1

f `+k−1

where b(−` − k) 6= 0 for all k ∈ N∗, using an identity (1) which realises the
Bernstein polynomal of f . In particular 1/f `+k belongs to D · 1/f `, k ∈ N∗,
i.e. D · 1/f ` = O[1/f ]. ¤

This result is very useful in effective algebraic geometry, when one needs
a resolution of O[1/f ]. Indeed, the first step is also the computation of the
Bernstein polynomial of f in order to determinate its smallest integral root
(see [8], [9]). Let us mention that the reverse result is true.

Proposition 2.8 ([1], [5]) Let f ∈ O be a nonzero germ such that f(0) = 0
and ` ∈ N∗. The following conditions are equivalent :

1. The smallest integral root of b(f s, s) is strictly greater than −`− 1.

2. The D-module O[1/f ] is generated by 1/f `.

3 LCT(D) and D-modules

From the previous result, the condition B(hD) introduced in the introduction
just means: −1 is the only integral root of b(hs

D, s) (since its roots are negative.)
This fact confirms that the D-Module viewpoint is pertinent in order to get a
best understanding of the condition LCT(D).

Moreover, one can prove that the conditions A(1/hD) and B(hD) are
linked.

Proposition 3.1 [12] Let h ∈ O be a nonzero germ such that h(0) = 0.
Assume that the ideal AnnD 1/h is generated by operators of order one. Then
the condition B(h) is verified.

Example 3.2 If h = x2
1 + · · ·+ x2

4, then b(hs, s) = (s + 1)(s + 2) and one can
check that AnnD 1/h is generated by the operators xi(∂/∂xj) − xj(∂/∂xi),
1 ≤ i < j ≤ 4, x1(∂/∂x1)+ · · ·+x4(∂/∂x4)+2 and (∂/∂x1)2 + · · ·+(∂/∂x4)2.

Thus the condition A(1/hD) is a local analogue of LCT(D) for Koszul-free
divisors. Is it true for any germ h ? This is true for the weighted-homogeneous
hypersurfaces with an isolated singularity (see [11], [4] and below). Moreover,
A(1/hD) is true for generic arrangements, and this agrees with Terao’s con-
jecture (see the first lecture and [12]). The general problem is still open.
Meanwhile, this gives a hope for a best understanding of LCT(D), since it is
easier to work with condition A(1/h) than with a morphism of complexes.
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4 The condition A(1/h)

Let h ∈ O be a nonzero germ such that h(0) = 0. We recall here the known
facts about the meaning of the condition A(1/h) (see [12]).

First, we have the following easy criterion.

Lemma 4.1 Let h ∈ O be a nonzero germ such that h(0) = 0. Assume that
the following conditions are verified:

H(h) : h belongs to the ideal of its partial derivatives.

B(h) : −1 is the smallest integral root of b(hs, s).

A(h) : The ideal AnnD hs is generated by operators of order 1.

Then the ideal AnnD 1/h is generated by operators of order 1.

Proof. Indeed, we have also a decomposition:

AnnD[s] h
s = D[s](s− v) +D[s]AnnD hs

where v is a vector field such that v(h) = h. Moreover, under the condi-
tion B(h), the ideal AnnD 1/h is obtained by fixing s = −1 in a system of
generators of AnnD[s] h

s (Proposition 2.8). ¤

Reciprocally, what does remain true ? We recall that the implication
A(1/h)⇒B(h) is always true. On the other hand, does A(1/h) imply H(h) ?
This is true for isolated singularities ([11]), Koszul-free germs, and suspensions
of unreduced plane curve zN + g(x1, x2) ([12]). So, one can think that it is
always true (?)

Finally, the condition A(1/h) does not imply A(h) in general. Indeed,
Calderón’s example h = x1x2(x1 + x2)(x1 + x2x3) verifies LCT(D), A(1/h),
B(h), H(h) and not A(h). So, in the identity:

AnnD
1
h

= D(x1∂1 + x2∂2 + 4) + AnnD hs

we remark that something is happening but we can not understood it with
these objects.

Meanwhile, condition A(h) is not unrealistic. Indeed, we have the follow-
ing characterization of A(1/h) for Koszul-free germs.

Theorem 4.2 ([12]) Let h ∈ O be a Koszul-free germ. Then AnnD 1/h is
generated by operators of order one if and only if the conditions H(h), B(h)
and A(h) are verified.

Moreover, with the criterion above, we get:

If h verifies H(h) and A(h) then A(1/h) is equivalent to B(h).

5



For example, if h defines an isolated singularity, one can prove that:

AnnD hs =
∑

1≤i<j≤n

D(h′xj
∂i − h′xi

∂j)

(see [13]). Moreover, if h is weighted-homogeneous, the Bernstein polynomial
b(hs, s) is given by a closed formula (see [13]). In particular, we find exactly
the technical condition for LCT(D) given in the first lecture (Theorem 2.1).
For example, if h = x2

1 + · · · + x2
n then we have b(hs, s) = (s + 1)(s + n/2)

whereas LCT(D) is true if and only if n is odd or n = 2.

5 The condition A(h)

In this last part, we explain why the condition A(h) may be considered almost
as a geometric condition.

Of course, the condition A(h) may be considered in terms of the D-module
Dhs (since D/AnnD hs ∼= Dhs). To this end, let us recall some classical notions
in D-Module theory.

• A nonzero differential operator P ∈ D may be written in a unique way
as a finite sum:

∑
α=(α1,...,αn) pα(∂/∂x1)α1 · · · (∂/∂xn)αn , with pα ∈ O. The

degree of P is also the integer deg(P ) = max{|α | | pα 6= 0}, and its principal
symbol is the homogeneous polynomial σ(P ) =

∑
|α|=deg(P ) pαξα1

1 · · · ξαn
n ∈

grFD ∼= O[ξ1, . . . , ξn].
For example, if P = 3x1(∂/∂x1)2− (∂/∂x1)(∂/∂x2) + x1(∂/∂x2) + 1, then

deg(P ) = 2 and σ(P ) = 3x1ξ
2
1 − ξ1ξ2.

• Given a nonzero coherent left ideal I ⊂ D, we denote by gr I ⊂ O[ξ] the
homogeneous ideal generated by the polynomials σ(P ), P ∈ I. The charac-
teristic variety charD D/I of D/I is the zero set of gr I in T ∗Cn.

For example, if I = D((∂/∂x1), . . . , (∂/∂xn)), then gr I = (ξ1, . . . , ξn)O[ξ]
and charD D/I = Cn × {0} ⊂ T ∗Cn.

For the coherent D-module D/AnnD hs ∼= Dhs, we have the following
result, due to M. Kashiwara.

Theorem 5.1 ([5]) Let h ∈ O be a nonzero germ such that h(0) = 0. The
characteristic variety of Dhs coincides with the relative conormal space:

Wh = {(x, λdh(x)) |λ ∈ C}

Now it easy to check that the following condition implies A(h):

W(h) : The relative conormal space Wh is defined by linear equations in ξ.

This is the reason why A(h) may be considered almost as a geometric condition
on h.
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Example 5.2 The condition W(h) is true when h defines an isolated singu-
larity, and when h locally weighted-homogeneous free germs ([2]).

Remark 5.3 It is easy to check that the condition W(h) is equivalent to the
following one: the kernel of the morphism of graded O-algebra

O[X1, . . . , Xn] −→ R(Jh)
Xi 7−→ th′xi

is generated by homogeneous elements of degree 1. Here Jh denotes the jaco-
bian ideal (h′x1

, . . . , h′xn
)O andR(Jh) is the Rees alebra

⊕
d≥0 J d

h td. Following
a terminology due to W. Vasconcelos, one says that Jh is of linear type (see
[2] for more details.)

Remark 5.4 We do not have an example of a germ h verifying A(h) and not
W(h). Are these conditions equivalent ?
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