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Logarithmic comparison theorem.
An introduction

Let X denote a complex analytic manifold of dimension n, (n ≥ 2). Let
OX denote the sheaf of holomorphic functions on X. In a point m ∈ X, we
will identify the stalk OX,m with the ring O = C{x1, . . . , xn}.

In this lecture, D ⊂ X denote a divisor on X, and hD ∈ O will be a
reduced equation of D in a local chart.

1 Logarithmic de Rham complex associated with D

1.1 Definition

First, let us consider the classical de Rham complex on X:

0 → Ω0
X

d0−→ Ω1
X

d1−→ · · · −→ Ωn−1
X

dn−1−→ Ωn
X → 0

denoted by Ω•X . In local coordinates, an holomorphic p-form w ∈ Ωp
X may be

written as a sum
∑

1≤α1<···<αp≤n aαdxα1 ∧ · · ·∧dxαp , aα ∈ O. The differential
dp is defined by:

dp(w) =
n∑

i=1

∑

1≤α1<···<αp≤n

(∂aα/∂xi)dxi ∧ dxα1 ∧ · · · ∧ dxαp .

If we consider the divisor D ⊂ X, we have also the meromorphic de Rham
complex Ω•X(?D). The definition is the same as above, but the aα are mero-
morphic functions with poles along D. We denote by OX(?D) the sheaf of
meromorphic functions with poles along D. In particular, Ω0

X(?D) = OX(?D).

There is another de Rham complex associated with D.

Definition 1.1 A meromorphic p-form w ∈ Ωp(?D) is logarithmic if w, dw
have at most a simple pole along D.

In local coodinates, this may be written: hDw, hDdw ∈ Ω•X . For all p,
0 ≤ p ≤ n, we denote Ωp

X(log D) ⊂ Ωp
X(?D) the subOX -module of logarithmic

forms. It is easy to verify that Ω•X(log D) is again a complex. It is the so-called
logarithmic de Rham complex associated with the divisor D. This general
definition is due to K. Saito ([10]).
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Remark 1.2 The condition ”w is a logarithmic form” is not very explicit.
For example, let us assume that D is the normal crossing divisor defined by
hD = x1x2 in X = Cn. Then w = dx2/x1 has of course a simple pole along
D, but w is not logarithmic since dw = (−1/x2

1)dx1 ∧ dx2.

Let us recall that the logarithmic de Rham complex was first introduced
by P. Deligne in the case of normal crossing divisors ([7]). The OX -modules
Ω1

X(log D) are also quite explicit. In our example above, Ω1
X(log D) is the

free OX -module: OXdx1/x1 ⊕ OXdx2/x2 ⊕ Odx3 ⊕ · · · ⊕ Odxn and for all
1 ≤ q ≤ n, Ωp

X(log D) =
∧p

i=1 Ω1
X(log D). In general, it is not easy at all to

explicit Ωp
X(log D)...

1.2 Some properties of Ω•
X(log D)

• Ω0
X(logD) = OX ; Ωn

X(logD) = (1/hD)Ωn
X .

• dhD/hD ∈ Ω1
X(log D). So the inclusions Ωp

X ⊂ Ωp
X(log D), p ≥ 1, are

strict.

• For all p, the OX -modules Ωp
X(log D) are coherent (this is an easy exer-

cice, using that w ∈ Ωp
X(log D) ⇔ w, dhD ∧ w have almost a simple pole.)

• If D = D1 ∪D2, then hD2Ω
p
X(log D) ⊂ Ωp

X(log D1) ⊂ Ωp
X(log D).

Definition 1.3 A holomorphic vector field v is logarithmic along D if, for
any point m ∈ D, the derivation v(hD) belongs to hDOX,m.

We denote DerX(log D) ⊂ DerX(OX) the OX -Module (coherent) of loga-
rithmic vector fields.

Proposition 1.4 The inner multiplication of vector fields and differential
forms induces a complete pairing of OX-Modules:

DerX(log D)× Ω1
X(log D) −→ OX .

In particular, DerX(log D) and Ω1
X(log D) are OX -dual.

1.3 What is the Logarithmic Comparison Theorem ?

Let j denote the natural inclusion X\D ↪→ X. From Grothendieck Compari-
son Theorem ([8]), the de Rham morphism:

Ω•X(?D) −→ Rj∗CX\D

is a quasi-isomorphism. In other words, the meromorphic de Rham complex
calculates the cohomology of X\D.

Following F.J. Castro-Jiménez, D. Mond and L. Narváez-Macarro ([5]),
one says that the divisor D satisfies the Logarithmic Comparison Theorem if:
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LCT(D) : The inclusion Ω•X(logD) ↪→ Ω•X(?D) is a quasi-isomorphism.

For example, P. Deligne proved that LCT(D) is verified for normal cross-
ing divisors ([7]) (and this is also an easy exercice to find the cohomology of
H•(Cn\D, 0) using the complex Ω•X(logD).)

Remark 1.5 In fact. P. Deligne considered a filtred morphism:

(Ω•X(logD), F ) ↪→ (Ω•X(?D), P )

where P k(Ωp
X(?D)) = Ωp

X((p − k + 1)D) if p ≥ k and 0 otherwise, and he
proved that the quasi-isomorphism is compatible with filtrations. This fact
was crucial when he defined a mixed Hodge structure for a quasi-projective
manifold, using the resolution of singularities in order to get normal crossing
divisors.

There are few families of divisors for which this condition is understood.
Indeed, it is difficult to work directly with the complex Ω•X(logD), since we
do not have in general a description of the logarithmic forms. In the following,
we recall the main results about the condition LCT(D).

2 The case of weighted-homogeneous hypersurfaces
with an isolated singularity

Let us recall some definitions.
• A divisor D has an isolated singularity in m ∈ D if on a neighborhood

of m, the jacobian ideal JhD
= (h′D,x1

, . . . , h′D,xn
)OX,m defines m.

• A polynomial h ∈ C[x] = C[x1, . . . , xn] is weighted-homogeneous of
weight d ∈ Q+ for a system α = (α1, . . . , αn) ∈ (Q∗+)n if h is a (non triv-
ial) C-linear combination of monomials xγ1

1 · · ·xγn
n with

∑n
i=1 αiγi = d. In

other words, we have the relation: χ(h) = dh where χ is the Euler-vector field
α1x1∂1 + · · ·+ αnxn∂n associated with α.

For example, h = xa1
1 + · · · + xan

n , where a1, . . . , an ≥ 2, is a weighted-
homogeneous polynomial which defines an isolated singularity in 0.

• A divisor D is weighted-homogeneous in m ∈ D if there exists an analytic
change of coordinates φ such that h◦φ is a weighted-homogenous polynomial.

As usual in theory of singularities, the case of weighted-homogeneous poly-
nomials h defining an isolated singularity at the origin gives explicit formulas
in terms of weights linked to the jacobian algebra Ah = C[x]/(h′x1

, . . . , h′xn
).

Theorem 2.1 ([9]) Let h ∈ C[x] be a weighted-homogeneous polynomial of
degree d for a system α ∈ (Q∗+)n. Assume that h defines an isolated singu-
larity at the origin. Let D ⊂ Cn be the hypersurface defined by h.

The following condition are equivalent:
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1. The logarithmic comparison theorem holds for D.

2. The link of 0 in D is a Q-homology sphere.

3. There is no weighted-homogeneous element in Ah whose weight belongs
to the set {k × d−∑n

i=1 αi ; 1 ≤ k ≤ n− 2} ⊂ Q.

In particular, the logarithmic comparison theorem does not hold in general.
For example, if h = x2

1 + · · ·+ x2
n then we can take d = 2, α1 = · · · = αn = 1,

and Ah = C1. Thus LCT(D) is also verified if and only if n = 2 or n is odd.

3 The case of hyperplane arrangements

Let D be a finite union of affine hyperplanes H ⊂ X = Cn, i.e. H = {αH = 0}
where αH ∈ C[x1, . . . , xn] are polynomials of degree one. We can associate
with D the C-subalgebra of Ω•X(?D) generated by 1 and by the 1-forms
dαH/αH ∈ Ω1

X(?D). Let R•(D) denote this algebra of differential forms.
It is well known that R•(D) is isomorphic to the so called Orlik-Solomon

algebra. Moreover, we have:

Theorem 3.1 (E. Brieskorn, 1973) For all k ≥ 0, Rk(D) ∼= Hk(X\D,C).

On the other hand, we can consider the complex of C-vector spaces: 0 →
R0(D) 0→ · · · 0→ Rn(D) → 0 as a subcomplex of Ω•X(logD). Thus, a natural
question is: does the logarithmic comparison theorem hold for any hyperplane
arrangement ? This was conjectured by H. Terao (1978). This is true for
particular families of hyperplane arrangements (like generic arrangements or
complex reflexion arrangements) and when n ≤ 4 ([12]). But in general, the
question is still open.

4 The case of free divisors

4.1 Definition and example

Definition 4.1 ([10]) A divisor D ⊂ X is free if DerX(logD) is locally free.

From the inclusions: hDDerX(OX)m ⊂ DerX(logD)m ⊂ DerX(OX)m, the
rank of DerX(logD) is also equal to n.

Example 4.2 Free divisors appear in quite distinct contexts.
1 Normal crossing divisors are free. Indeed, in local coordinates such that

hD = x1 · · ·xp, then:

DerX(logD) = Ox1∂1 ⊕ · · · ⊕ Oxp∂p ⊕O∂p+1 ⊕ · · · ⊕ O∂n

2 Plane curves are free ([10]).
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3 Complex reflexion arrangements are free (H. Terao, 1980). For example,
the braid arrangement - defined by

∏
1≤i<j≤n(xi − xj) in Cn - is free.

4 The discriminant of a semi-universal deformation of an isolated hyper-
surface singularity is a free divisor (K. Saito, 1983). For example, F (x, z) =
x4 + z2x

2 + z3x + z4 is a semi-universal deformation of f = x4. Thus hD =
disc(F, F ′

x) defines a free divisor.

Let us remark that the knowledge of the freeness of a divisor does not
give a basis of DerX(logD)... However, the following result - ’Saito Criterion’
([10]) - allows to test the freeness of a divisor.

Proposition 4.3 The divisor D is free in m if and only if there exist v1, . . . , vn ∈
DerX(logD) with vi =

∑n
j=1 ai,j(∂/∂xi) such that det (ai,j) = hD,m up to a

unit.
The family {v1, . . . , vn} is also a basis of DerX(logD).

For example, it is easy to prove that the braid arrangement is free.

Most of the known results about the condition LCT(D) were obtained
for free divisors. Indeed, the logarithmic de Rham complex Ω•X(logD) is also
explicit. More precisely, with the duality between Ω1

X(logD) and DerX(logD)
(Proposition 1.4), Ω1

X(logD) is also a free OX -Module and: Ωq
X(logD) =

∧qΩ1
X(logD) for 1 ≤ q ≤ n ([10]).

4.2 Main results

First, the sitution is well understood if n = 2.

Theorem 4.4 ([2]) If D ⊂ X = C2 is a plane curve, then the logarithmic
comparison theorem holds if and only if D is locally weighted-homogeneous.

This last condition means: for all m ∈ D, D is weighted-homogeneous at
m. More generally, we have:

Theorem 4.5 ([5]) Let D ⊂ X be a locally weighted-homogeneous free divi-
sor. Then the logarithmic comparison theorem holds for D.

Among the free divisors of Example 4.2, the one given in 3 and some of 4
are locally weighted-homogeneous. Under this strong condition, D is locally a
product: (X, D,m) ≡ (Cn−1×C,Cn−1×{0}, (0, 0)), and an induction on the
dimension may be done. The reverse relation is false in general. For example,
h = x1x2(x1 + x2)(x1 + x2x3) defines a free divisor for which LCT(D) is true
and h is not weighted-homogeneous ([1]). Meanwhile, M. Schulze proved that
a weak form of homogeneity is always necessary.

Theorem 4.6 ([11]) Let D ⊂ X be a free divisor. If the logarithmic compar-
ison theorem holds for D, then hD belongs to the ideal of its partial derivatives
at any m ∈ D.
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In other words, there exists locally a vector field v such that v(hD) = hD.
One says sometimes that h is Euler-homogeneous. Of course, this condition is
in general weaker than weighted-homogeneity (consider ex3(x5

1 + x5
2 + x2

1x
2
2)).

However, we recall that this is the same notion for a germ which defines an
isolated singularity (K. Saito, 1971).

In conclusion, a form of homogeneity appears to be important in relation
to the condition LCT(D).

5 A differential viewpoint for free divisors

Given a complex analytic manifold X of dimension n ≥ 2, we denote DX

the sheaf of linear differential operators with holomorphic coefficients and
F•D its filtration by order. Locally at a point m ∈ X, we have DX,m

∼=
D = O〈∂1, . . . , ∂n〉, and we identify grFD with the polynomial ring O[ξ] =
O[ξ1, . . . , ξn].

Here we recall how the condition LCT(D) may be understood in terms
of DX -Modules for free divisors D ⊂ X, as it was initiated by F.J. Calderón-
Moreno in [1].

The so-called Riemann-Hilbert correspondence of Z. Mebkhout and M.
Kashiwara (1984) asserts that there is an equivalence of categories between
the category hr(DX) of (left) regular holonomic DX -Modules and the one of
perverse sheaves PervX(C) on X, using the de Rham functor:

hr(DX) −→ PervX(C)
M 7−→ DR(M) = Ω•X ⊗OX

M
Roughly speak, a perverse sheaf on X is a special type of complex of sheaves
on X which cohomology groups are constructible in C-vector spaces of finite
dimension on a stratification of X. For example, OX is regular holonomic,
and DR(OX) = Ω•X is quasi-isomophic to the constant sheaf CX (Poincaré
Lemma).

As OX(?D) is regular holonomic, the meromorphic de Rham complex
DR(OX(?D)) = Ω•X(?D) is a perverse sheaf too. So it is natural to inves-
tigate conditions on D in order to get the perversity of Ω•X(logD). In the
case of free divisors, F.J. Calderón-Moreno proved that this is true when for
a particular kind of free divisor.

Definition 5.1 A free divisor D ⊂ X is Koszul-free if there exists locally a
base {δ1, . . . , δn} of DerX(logD) such that the sequence of principal symbols
(σ(δ1), . . . , σ(δn)) is grFD-regular.

For example, plane curves and locally weighted-homogeneous free divisors
are Koszul-free ([10], [3]).

Theorem 5.2 ([1]) If D is a Koszul-free divisor, then Ω•X(logD) is a per-
verse sheaf.
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The analogue of condition LCT(D) for free divisors was also investigated
by the sevillan group around F.J. Castro-Jiménez and L. Narváez-Macarro
(see [6], [4]).

Theorem 5.3 ([4]) Let D ⊂ X be a free divisor. Then the inclusion:

Ω•X(logD) ↪→ Ω•X(?D)

is a quasi-isomorphism if and only if the following conditions are verified:

1. the complex DX ⊗L
VD

0 (D)
OX(D) is concentred in degree 0 ;

2. the natural morphism

ϕD : M̃(logD) = DX ⊗VD
0 (D) OX(D) −→ OX(?D)

is an isomorphism.

Here VD
0 (D) ⊂ D is the ring of logarithmic operators (i.e. P ∈ DX such that

locally P ·(hk
D) ⊂ hk

DO for any integer k), and OX(D) is the VD
0 (D)-module of

meromorphic functions with almost a simple pole along D. In the particular
case of Koszul-free divisors, the condition 1 in the differential characterization
above is always verified ([1]).

Finally, let us remark that the surjectivity of the morphism ϕD means
locally: D1/hD = O[1/hD]. So this differential viewpoint is very useful in
order to have a best understanding of the condition LCT(D) (since it was
not clear at all that this last condition is necessary for LCT(D) in the case
of free divisors).
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